Quantifying Systemic Risk in Cryptocurrency Markets: A High-Frequency Approach

  • Author
  • João Pedro Malim Franco
  • Co-authors
  • Márcio P. Laurini
  • Abstract
  • We conduct a comparative analysis of the original $\text{CoVaR}^=_{\alpha, \beta}(Y|X)$ and  modified $\text{CoVaR}_{\alpha, \beta}(Y|X)$ measures of Conditional Value-at-Risk (CoVaR) using high-frequency returns of Bitcoin (BTC), Ethereum (ETH), Ripple (XRP), Solana (SOL), and Binance Coin (BNB) at 5-minute intervals. Additionally, we employ the Kolmogorov-Smirnov (KS) bootstrapping test to assess potential interdependencies among cryptocurrency returns. Our results indicate that, on average, estimates derived from CoVaR$_{\alpha,\beta}(Y|X)$ tend to surpass those from CoVaR$^{=}_{\alpha,\beta}(Y|X)$, with superior performance in the backtesting analysis. Moreover, the Kolmogorov-Smirnov (KS) test underscores a notable degree of interconnectedness within cryptocurrency returns.

  • Keywords
  • Conditional Value-at-Risk (CoVaR), Cryptocurrencies, Backtesting
  • Modality
  • Comunicação oral
  • Subject Area
  • Econometria Financeira (Financial Econometrics)
Back Download
  • Apreçamento de Ativos (Asset Pricing)
  • Finanças Corporativas e Bancárias (Corporate Finance and Banking)
  • Econometria Financeira (Financial Econometrics)
  • Engenharia Financeira (Financial Engineering)
  • Macrofinanças (Macrofinance)