Previsibilidade da Direção do Preço Intradiário do Bitcoin com Modelos de Random Forest

  • Author
  • Paulo de Castro Rubio Poli
  • Co-authors
  • Leandro dos Santos Maciel
  • Abstract
  •  

    O mercado de negociação do Bitcoin apresentou um acelerado crescimento a partir do ano de 2019 e atraiu a atenção de investidores individuais e institucionais. Dada a elevada volatilidade das cotações da moeda digital, previsões acuradas sobre a direção futura de seus preços são de grande importância para os participantes deste mercado. A dinâmica complexa dos preços da criptomoeda demanda o uso de técnicas sofisticadas de aprendizado de máquinas para a realização de previsões. Neste contexto, este trabalho objetivou avaliar a previsibilidade da direção do preço intradiário do Bitcoin durante o período de janeiro de 2020 a dezembro de 2022. Para este propósito, modelos de random forest foram utilizados para prever se a criptomoeda seria valorizada ou desvalorizada nos horizontes de previsão de um minuto, cinco minutos, quinze minutos, uma hora, seis horas e um dia. As variáveis explicativas se referem a defasagens de retornos de preços de fechamento, máximos e mínimos da própria criptomoeda. As previsões da moeda digital por modelos de random forest foram comparadas com as previsões dos modelos ARIMA e de regressão logística, em termos de medidas de poder preditivo. Os resultados encontrados apontam violações na verificação empírica da hipótese de eficiência de mercado em sua forma fraca para os preços intradiários do Bitcoin. Os movimentos intradiários da moeda puderam ser previstos por modelos de random forest com acurácia superior a observada por um modelo de passeio aleatório e pelos modelos competidores para diferentes horizontes de previsão.

  • Keywords
  • Bitcoin, Previsão, Dados intradiários, Random Forest
  • Modality
  • Comunicação oral
  • Subject Area
  • Econometria Financeira (Financial Econometrics)
Back Download
  • Apreçamento de Ativos (Asset Pricing)
  • Finanças Corporativas e Bancárias (Corporate Finance and Banking)
  • Econometria Financeira (Financial Econometrics)
  • Engenharia Financeira (Financial Engineering)
  • Macrofinanças (Macrofinance)