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Abstract

This paper studies peer effects in higher education by observing students in an envi-
ronment of active learning, where peer interaction is a meaningful mechanism explaining
performance. The identification of peer effects relies on the random assignment of stu-
dents to groups and explores variation both in terms of the share of low and high-ability
students in each group as well as the frequency that peers meet for group work. The main
result of the paper is that the share of low and high-ability peers in a group is not able to
explain by itself the existence of positive peer effects on performance, which arises only
when we consider the fraction of a student’s high-ability peers in the group that are also
his peers in a second group. We show that when pairs of students meet in more than
one group, they are more likely to establish a link, measured by students’ self-reported
naming of their relevant peers. Thus, increased interaction with high-ability peers impacts
positively performance. However, we also show that this effect depends on whether the
student himself is classified as low or high-ability.
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1 Introduction

Peer effects matter for performance in education.(Sacerdote, 2011; Epple and Romano, 2011)
To some extent, policies such as the provision of educational vouchers or ability tracking rely
on the possibility that a student’s performance could improve in a different group. From this
perspective, understanding how peer effects operate is crucial to thinking about alternative
grouping policies.

In this paper, we study peer effects in a higher education institution adopting an active
learning methodology, which is a pedagogical strategy that places peer interaction at the core
of the learning process. In our setting, students meet in small groups for continuously evaluated
classwork, providing further incentives for students to interact. To allocate students in these
groups, we developed an assignment rule that ensured random variation in two dimensions:
the number of peers by ability levels in each group and the frequency that specific peers meet
for group work. While group composition in terms of how many low and high-ability students
could affect performance, there are different channels through which this could happen. The
measure on the numbers of meetings between pairs of students allows us to distinguish what
drives peer effects in our setting: composition, frequency of meetings or a combination of the
two factors.

We begin the analysis by showing that for peers sharing at least one group, a student is 87%
more likely to report the desire of having a specific peer again in some group if they already
interact in more than one group. Then, we start analyzing peer effects on performance. We find
no average effect due to a change in group composition by simply replacing a low-ability student
with a high-ability one. However, the absence of effect from such a change seems to result from
opposing effects that becomes clear when we consider the dynamics of group interaction by
using our measure of the frequency of interaction among peers. If we keep constant the fraction
of frequent peers, the point estimate for the effect of replacing a low-ability student with a high-
ability one is a 2.9% decrease of a standard deviation, although not statistically significant at
usual levels. However, if instead we keep group composition constant and maximize the fraction
of frequent peers (relative to the average fraction across students), performance would increase
by 2.2% of a standard deviation.

We then show that for low-ability students, a change in group composition that replaces a
low-ability student with a high-ability one and also decreases their potential interaction implies
a 5% standard deviation decrease in performance while the same change in group composition
that, on the contrary, increase their potential interaction does not affect performance. An
analogous situation happens for high-ability students, for whom a replacement of a low-ability
student with a high-ability one that decreases their potential interaction has no effect on per-
formance, but the same change made with an increase in potential interaction seems to increase
performance by 5% of a standard deviation. Finally, we construct a measure of students’ con-
nectedness within each group using the report on the desire of having specific peers again in
subsequent groups. We show that improvement in the student’s network position within the
group could explain the positive peer effects for high-ability students.
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Related literature The largely explored linear-in-means model of peer effects (Sacerdote,
2001; Zimmerman, 2003; Hanushek et al., 2003) leaves no room for reallocation policies aimed
at improving efficiency: any positive effect arising from a reallocation of students that raises
a group’s average ability would be offset by a corresponding decrease in some other group’s
average ability (Hoxby, 2000). Efficiency improvement through a reallocation scheme depends
on the existence of different peer effects for different subgroups of students. Carrell et al.
(2009) show that the performance of low-ability students in college increases when they have
more high-ability peers and there are no negative effects the other way round. Given the
existence of such nonlinear peer effects, there would be scope for a policy aimed at maximizing
the interaction between those types of students.

However, experimental evidence on such a policy shows a detrimental effect on low-ability
students’ performance (Carrell et al., 2013). Contrary to what the previous positive reduced-
form estimates suggested, low and high-ability students did not interact as expected due to
endogenous sorting of peers within the new groups. An important takeaway is that identification
of the effects arising from peers’ equilibrium behavior, a key parameter for optimal group
design, is empirically challenging and reduced-form estimates could be misleading. (Manski,
1993; Goldsmith-Pinkham and Imbens, 2013; Lee, 2007; Bramoullé et al., 2009)

Our paper uses a credible source of exogenous variation in peer interaction within an en-
vironment where peer effects should be an important mechanism to explain performance. It
contributes to an empirical literature discussing peer effects as subsidy for the design of optimal
groups (Carrell et al., 2013; Booij et al., 2017; Garlick, 2018) with evidence that changing the
mix of low and high-ability peers a student has in a group can only produce positive peer effects
if it induces more interaction among peers. Actually, there could be negative peer effects on
the performance of students at the lower end of ability distribution placed in groups with low
potential for peer interaction.

To the best of our knowledge, the closest paper in terms of the analysis we do is Brady et al.
(2017). In the context of the U.S. Navy Academy, all students are observed in two kinds of
groups with different sizes and purposes. They identify negative peer effects from the variation
in peer ability across groups at a broader level. Then, by looking at smaller and more task-
oriented groups they find that positive peer effects exist due to peers in these groups that are
also peers in the broader group. This is a result qualitatively similar to ours as it highlights
that stronger interaction seems to matter in explaining peer effects.

The next section presents the organizational framework and the assignment mechanism of
students in our context. Then we present the data and discuss the implementation of our
empirical strategy. Then, we present and discuss our main results and conclude by making
some final remarks.
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2 Background

2.1 Organizational Framework

São Paulo School of Economics (FGV EESP) is a distinguished higher education institution
in Brazil. From 2003 to 2016, the school selected up to 60 students for the undergraduate course
in economics by applying a highly selective admission exam done by around 1,500 candidates.
From 2017 to 2021 the number of students admitted each year gradually increased and now the
school accepts up to 120 students. The annual course fee for 2019 was approximately R$ 65,000,
which was roughly 3.7 times the Brazilian per capita income calculated for that year. Thus,
FGV EESP’s students are at the top of both the country’s ability and income distribution.

In 2013, the school began to replace the traditional teaching method based on lectures
with a model of Active Learning. Students admitted from that year on have been doing all of
their coursework under the Problem-based Learning method. Problem-based Learning (PBL)
is a pedagogical strategy in which learning evolves in a problem-solving framework. A central
element of this method is the goal of engaging students in their own learning process by working
with concrete problems in small groups. In FGV EESP’s, each student in each discipline is
allocated to a group of 12 students, on average, that will work together in sessions of two
hours. In different sessions of the same discipline, group members are the same. However,
across different disciplines, a given student has different pools of classmates in different groups.
The total number of sessions varies by discipline.

All of these sessions occur under the supervision of a tutor and each session has two parts.
In the pre-discussion part, a problem is presented to the group without any explicit requirement
for the work on the topic. The only available tools for students at the time are what they have
learned up to that point. In this phase, a student is chosen to be the leader of the session.
She organizes the discussion so that the group manages to bring about all the problem’s latent
questions. Besides, another student organizes the contributions of each group member into a
document made available to the group at the end of the session. Throughout this part, tutors
must ensure that all learning goals are clear to the group. Ideally, this should be done with
minimal interventions from the tutor.

Pre-discussion happens at the end of each session. At the beginning of the session, there is
the post-discussion part, which concludes the work started in the previous pre-discussion. This
way students have an interval of one day or more to make use of the pre-discussion information
together with bibliographic references to get prepared for the post-discussion. During the post-
discussion, students should answer all issues raised from the problem by using concepts and
tools they have learned from self or group study outside class. Group study in this case is not
restricted to happening among students of the same tutorial group.

In the post-discussion, besides organizing the discussion, the tutor must guide students,
so they develop a comprehensive understanding of the topic under debate. When there is
available time, he can also give additional information on the topic. Once students conclude
the task, the tutor must evaluate individual performance and give appropriate feedback so
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that students know exactly how they performed. That is, in each session each student receives
a grade between zero and one. At the end of the period, the mean of these tutorial grades
enters the discipline’s final grade as a multiplicative factor over some combination of marks
from other examinations. This way, the better the performance in group work, the better the
overall performance. This provides a strong incentive for students to show up (absence implies
zero) and to really participate during tutorial sessions.

2.2 Students Assignment Mechanism

We implemented the allocation of new students from the 2018 and 2019 cohorts in their
first semester at the school. During this semester, they took six mandatory courses, and in
every discipline each student was assigned to a tutorial group with 12 students on average. The
algorithm to allocate students into tutorial groups ensured random variation across groups in
two dimensions. First, it created large variation across groups considering the proportions of
low and high-ability students in each group. Besides, since students take six disciplines it was
possible that some of them share more than one group. Thus, some pairs of students met weekly
in only one group while others, by chance, ended up meeting in more than one group. This
implies that there is random variation in the frequency of meetings across pairs of students.

In principle, a simple lottery placing students across groups in a given discipline would also
create variation in both dimensions. But to ensure that there would be a large suport of group
composition we implemented the allocation in two steps.1 Suppose we have a pool of students
to allocate in given discipline. After classifying students as low and high-ability according to
the ranking in the admission exam we performed the following two steps:

• Step 1) The algorithm randomly chooses how many students of each type will be allocated
in each of the groups. Example: A group will have 6 low and 6 high-ability students,
another group will have 2 low and 10 high-ability, and so on. We run this lottery without
replacement (conditional on type) to minimize the chance that two groups have the same
composition and then we increase variation across groups. As this step must respect
constraints on group size and total students by type, it actually defines three groups plus
a residual group.

• Step 2) Given the composition of groups defined previously, it randomize which students
will be in each group. That is, if there is a total of 20 low-ability students and the previous
step defined that a group must have 6 of them, this step defines the identity of these six
students. Then, among the pool of the 14 remaining low-ability students, the algorithm
draw a subset of them for the next group and so on.

Random variation in group composition The algorithm produces what we call through-
out the paper random variation in group composition: Step 2 ensures that for a given student,

1The most relevant aspects of the assignment mechanism will be shown with a simple example. A detailed
explanation of the allocation process is left to the appendix.
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being in a group with many or few high-ability students is independent of his unobservables.
The actual outcome of the allocation process is illustrated in figure 1. Our sample contains 67
groups (each point in the plot) and there is a large support of composition as defined by pairs of
containing proportions of low and high-ability students in the group. Summing the proportions
of low and high-ability students not always add to 100% since there are few students with no
ability classifiction and students redoing the discipline (see descriptive statistics). These types
of students were randomlly allocated after the definition of group composition (step 1) and the
identity of students in each group (step 2).
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Figure 1: Random variation in terms of group composition. Each
point represents a group and the position in the plot is defined by
the proportion of each student type in the group as indicated by
the axis.

Random variation in the frequency of meetings Consider three students i, j, k randomly
selected to be in the same group in a given discipline. Since the above two-step procedure is
repeated for every discipline, it is possible that in a different discipline the pair ij is again (by
chance) allocated to the same group while k ended up in another group. Thus ij meets twice
while ik jk meet only once. This is what we call random variation in the frequency of meetings.
Table 1 shows that there it was possible to combine new students to form up to 9,802 pairs.
However, in the actual allocation, 55% of those theoretical pairs never happen to meet, 29.6%
meet in only one group and 15.4% meet in more than one group. Thus, conditional on sharing
some group, one third of the pairs meet at least once again.

Randomization check By performing student allocation through the implementation of the
above algorithm, it was expected that student’s average ability in a group was not correlated
with the number of low and high-ability students in that group. To check this was so, we regress
student’s (standardized) own ability on group composition, conditional on randomization con-
trols (year, discipline and whether student is either low or high-ability). In each column of table
2, group composition is the number of low and high-ability students classified by different mea-
sures of incoming ability: final score (which determines the ranking of students), mathematics
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Table 1: Number of meetings by pair of students

Number of meetings Number of pairs Frequency
0 5,390 55.0%
1 2,897 29.6%
2 1,099 11.2%

≥3 416 4.2%
Total 9,802

Notes: From all possible pair of students, 55% never meet, 29.6% meet
in one group and 15.4% meet in more than one group.

and writing skills.

Table 2: Regression of Own Ability on Group Composition

Dependent variable: Own ability

High Peers -0.006 -0.003 -0.005
(0.008) (0.008) (0.010)

Low Peers 0.001 -0.004 -0.002
(0.009) (0.011) (0.010)

Retained Peers 0.078* 0.073+ 0.074+
(0.039) (0.039) (0.038)

Other Peers 0.002 0.002 0.002
(0.016) (0.016) (0.016)

Peers classified by Final score Math Writing
Students 178 178 178
Observations 994 994 994
Groups 67 67 67

Notes: Own ability refers to the score in the admission exam ability measures
standardized among new students by year. Peers variables count the number of
students of each type in each group considering their classification according to the
ability indicated in the bottom of the table. Standard errors clustered by student
in parentheses and p-values in brackets. + p < 0.1, ∗ p < 0.05

Point estimates for on Low and High Peers are virtually zero, as well as for the coefficients on
the number of peers not classified by ability (Other peers). The only significant results appear
for the coefficients on the number of peers doing the course for a second time (Retained peers).
However, we do not believe this indicates any problem with the allocation. There are only eight
groups out of 67 in which there is one such student plus two groups in which there are two such
students. The average standardized final score in the latter two groups is 0.26 while it is zero
for the remaining groups. Thus, it is likely that the estimate is really due to chance.

As a final remark, it is worth noticing some aspects of the workflow to implement the
allocation. After doing the above procedure we provided to the school staff a list indicating the
groups of each student in each discipline. Between this information and the beginning of classes,
some students usually accepted offers from other institutions before knowing their allocation.
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These are usually high-ability students that end up being replaced by low-ability students.
For those who started the course, there was perfect compliance with the allocation. One last
important aspect is that the assignment of tutors to each group was done independently and
in advance of the assignment of students.

3 Data

Our analysis use administrative data from the first semester of 2018 and 2019 academic
years. All variables in our data are built from information on students’ performance in the
admission exam and in all disciplines they take during their first semester and from the allo-
cation of students implemented according to our guidelines. In this section we define the basic
variables we use and present descriptive statistics.

3.1 Variables

Academic performance The final measure of performance in a given discipline may take
into account different kinds of activities. Each discipline combines exams, problem sets or other
evaluations with varying weights. To have a more homogeneous measure of performance we
use scores of the first exam taken in each discipline (standardized by discipline). Students take
all exams during a week two months after the beginning of the course. There is a discipline
(Probability) that starts only after the round of first exams. For this discipline we consider its
final and single exam.

Students classification Students are classified according to their predetermined ability in
mathematics and writing skills measured by the admission exam. For each student, we construct
dummy variables indicating whether she belongs to the top or bottom 50% of his cohort’s math
or writing score distribution. This is what defines low and high-ability students in the analysis.
Whenever we need to look at subgroups of students, we do that based on the math classification.
Data on previous cohorts show evidence that this is the best predictor of GPA. To classify a
given student’s set of peers, we will sometimes use their classification based on writing skills.

Number of peers For a given student, this variable simply counts the number of other
students in the group falling in each ability category (low, high). Most of our analysis will
consider peers classified by math ability, although we use the writing ability classification in
some exercises. There are two other types of students we count separately: those doing a
discipline for a second time (retained peers) and few that did not use school’s admission exam
(other peers). These types were randomly allocated in the group and appear only as controls
in the regressions.

Frequent peers As discussed before, some pairs of students take more than one discipline
together. Thus, for a given student, we identify how many peers in her group are also present in
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at least some other group. This is done separately for each ability category. Then, we construct
a variable containing the fraction of peers in each category that are also peers in a different
group. That is, suppose a student has 4 low-ability peers in some group, and 3 of these peers
also appear in some other groups. We label this variable as “Frequent Low Peers (%)” and in
this example, it is equal to 3/4 = 75%.

Peers in other groups For identification purposes, we will have to control students’ total
exposition to peers of different ability levels (more on this later). Suppose a given student is
allocated to groups (a, b, c) and that the distribution of his high-ability peers across the groups
is given by (2, 3, 4), respectively. This student is exposed to a total of 2 + 3 + 4 = 9 high-ability
peers (it does not matter peers’ identity here). In groups (a, b, c), the variable “High Peers in
other groups” are (9, 9, 9) − (2, 3, 4) = (7, 6, 5), respectively.

Reported link We applied a survey asking students to name the most relevant peers for
group work in each group. Also, we asked them to indicate peers they wish to be part of their
groups in subsequent courses (independent of sharing some group at the time). We used this
information to construct variables at the dyad level indicating whether student i reported peer
j both conditional (j is in some of the i’s groups) and unconditionally (j need not be in any
of i’s group). About two thirds of the students answered the questionnaire and table 6 in the
appendix shows that women were more likely to answer the survey but answering is not related
to ability.

3.2 Descriptive statistics

In table 3 we provide some basic statistics that might be useful as a benchmarking when
discussing some of our results. Although table 2 shows that we allocated 178 students in 67
groups, we actually observe 135 students in these groups, resulting in a total of 791 observations.
These are the students that effectively started the course and took at least the first exam. The
median group is composed by 6 low and 6 high-ability students, and students have, on average,
half of the peers in each group appearing in at least some other group.

4 Empirical Strategy

The empirical strategy of the paper explores the random allocation that placed students into
tutorial sessions of different disciplines as the source of identification. As discussed previously,
the allocation is done at the discipline level and our main results compare students within a
given discipline by using the random variation of peer-related variables across groups as the
source of identification.

In terms of inference, it is possible that unobservables are correlated for the same student
across groups or for different students in the same group due to common shocks. Thus, our
inference procedure acknowledges that for students i and j in groups g of d and g′ of d′ it would
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Table 3: Descriptive statistics

Variables Mean SD Min Median Max N
Student’s predetermined ability
Final score 5.29 0.55 4.18 5.22 6.71 135
Mathematics 5.58 0.97 3.72 5.53 7.90 135
Writing 5.59 0.78 3.21 5.93 6.77 135

Number of peers by group
Group size 12.58 2.39 8.00 13.00 16.00 67
High-ability 6.37 2.32 1.00 6.00 11.00 67
Low-ability 5.43 1.71 2.00 6.00 9.00 67

Fraction of peers with more than one interaction
High-ability 0.48 0.26 0.00 0.50 1.00 791
Low-ability 0.51 0.27 0.00 0.50 1.00 791

Grade 6.78 2.13 0.00 7.00 10.00 791
Notes: Student’s predetermined ability refers to to the the admission exam ability measures and ranges from 0

to 10. Number of peers counts the number of students in each groups considering their classification according
to the math ability. Fraction of peers with more than on interaction contains the proportion of peers (by type)
in a group that also appear in some other group.

be possible that E [εi,g,dεj,g′,d′ ] ̸= 0 if i = j or g = g′ (conditional on observables). To deal with
this issue we follow Cameron et al. (2011) by estimating a two-way clustered standard error at
both student and group levels.2

4.1 Regressions at the dyad level

To test the hypothesis that meeting more frequently makes two students more likely to
estabilish a link between we will use two different approaches. Using the sample restricted to
individuals i that answered the survey and peers p with which they were allocated in at least
one group, we estimate

yipg = αi + βfrequent_peerip + x′
pθ + ηg + εipg (1)

where yipg is an indicator on whether i reported p as a relevant peer in group g, frequent_peerip is
an indicator of wheter p appears in at least some other group g′, xp a vector with characteristics
of p, and the estimates within-student variation (αi) conditional on the group (ηg). Thus, the
estimate for β gives the average effect of p being a frequent peer on the probability of being
reported as a relevant peer by i, conditional on having at least one group interaction. In this
exercise, an observation is a pair ip in every group g in which they meet.

Another approach considers all survey respondents i and every potential peer p, irrespective
of p’s response to the survey and of wheter they share some group. In this case, we estimate

yip = αi + βfrequent_peerip + γinteract_onceip + x′
p + εip (2)

2The inference assessment procedure proposed by Ferman (2019) does not indicate over-rejection problems.
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where yip is an indicator of whether i chose p to be in some of his group in subsequent periods,
frequent_peerip and x′

p as before, but now, as it is possible that i and p does not share any
group, there is the indicator interact_onceip to inform if they share at least one group. In this
case, the estimate for γ gives the average effect of meeting on the probability of indicating a
peer p, and the estimate for β gives the additional effect of meeting more than once. Here, the
sample contains both ip and pi, i ̸= p, but only a single observation for each case. Inference in
both cases acknowledges the existence of potential correlation in own unobservables for both
students and peers. So, standard errors are clustered at both student and peer dimensions.

4.2 Peer effects specification

A basic regression to estimate peer effects in our context is

yi,g,d = βhigh_peersi,g,d + z′
g,dπ + x′

i,g,dθ + ηd + εi,g,d (3)

where yi,d,g is performance of student i allocated to group g in discipline d, high_peersg,d is
the number of high-ability peers he has in the group, zg,d controls for further peer variables
(other/retained) and group size, xi,g,d contains student’s ability measures (to increase preci-
sion) and randomization controls, ηd is a discipline fixed-effect, and εi,g,d is a random shock.
An estimate for β would potentially give the effect of having one more high-ability peer in
replacement of a low-ability one (since group size and composition are fixed). However, there
is a drawback to this strategy.

Different papers on peer effects raise the relevant question about whether the whole group in
which students interact is the reference group that really matters. That is, although a student
could interact with every person in the group, it might be the case that only a subset of these
people forms the group we would like to define as peers. Our setting gives the opportunity
to refine the analysis in this dimension by exploring the random variation in the frequency of
meetings. Under the (testable) hypothesis that meeting more frequently makes two students
more likely to establish a link between them, we argue that this kind of frequent peer is part
of a more relevant reference group. Thus, we augment equation 3 as

yi,g,d = βhigh_peersi,g,d

+ γ1
(
share_freq_high_peersi,g,d × high_peersi,g,d

)
+ γ2

(
share_freq_low_peersi,g,d × low_peersi,g,d

)
+ z′

g,dπ + x′
i,g,dθ + ηd + εi,g,d

(4)

where share_freq_high_peersi,g,d and share_freq_low_peersi,g,d are the variables we labelled
before as frequent peers, computing the share of i’s peers in group g of discipline d who appears
in at least some other group g′ of d′. Then, conditional on group composition, an estimate
for γ1 gives the average effect of having all high peers in g also in some other g′ compared to
having no high peers in g appearing somewhere else (analogously for γ2).
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However, given a set of high peers a student i has in group g, there is an increasing chance
that some of these peers fall in the category of frequent peers as the number of high peers
she encounters in every other group rises. From an identification perspective, not controlling
for this total exposition to high-ability peers (the same applies for low-ability) could inflate
the estimates for γ1 and γ2: these estimates would capture not only the effect of having more
relevant peers in a group g, but also a feedback effect arising from the interaction in other
groups. Thus, our main specification becomes

yi,g,d = βhigh_peersi,g,d

+ γ1
(
share_freq_high_peersi,g,d × high_peersi,g,d

)
+ γ2

(
share_freq_low_peersi,g,d × low_peersi,g,d

)
+ δ1total_high_peersi,−g + δ2total_low_peersi,−g

+ z′
g,dπ + x′

i,g,dθ + ηd + εi,g,d

(5)

where total_high_peersi,−g and total_low_peersi,−g measure the total number of high and
low-ability peers that i has in all other groups different from g, indicated by −g.

5 Results

In this section, we present and discuss three sets of results. Firstly, we show that pairs of
students meeting more frequently are indeed more likely to establish a link, which we proxy by
two different kinds of peer interaction variable: peer report conditional on sharing some group
and unconditional peer report. Then, we show that a basic peer effects regression does not
identify any effect on performance, while a positive effect arises when we consider a specification
able to distinguish a set of more relevant peers. Finally, we show that, for at least a subset
of the students, this positive effect might be explained by an improvement in their network
position within groups.

5.1 Effects on peer reporting

We begin by discussing results on table 4, which presents estimates for equations 1 and
2. Columns 1 and 2 present estimates for equation 1 with and without controls, respectively.
In these cases, control mean shows that from the pool of group mates with which students
interact only once, there is a 27.5% of chance that some of these mates are named as a relevant
peer in the group. However, the estimate on frequent peer shows there is a 3.8 pp increase
in this chance when the pair of students has at least one more opportunity to meet, what
means a 13.8% effect. One potential concern with this estimate could be that by meeting more
frequently with someone, a student can learn about the characteristics of this frequent peer.
Then, reporting this person as a relevant frequent peer in a group could just reflect that more
skilled peers are being recognized. To check this is not the case, results of column 2 controls
for peer ability and gender. Although these characteristics seem to matter for reporting a peer
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as relevant, the effect of a random increase in the frequency of meeting is actually slightly
increased to be 4 pp.

Table 4: Effect of frequent interaction on peer reporting

Dependent variable: Reported peer

Conditional Unconditional

(1) (2) (3) (4)

Frequent peer 0.038∗ 0.040∗ 0.067∗ 0.067∗

(0.017) (0.016) (0.014) (0.013)

Peer interact at least once 0.038∗ 0.038∗

(0.007) (0.007)

Peer’s writing ability 0.036+ 0.006
(0.020) (0.006)

Peer’s math ability 0.058∗ 0.021∗

(0.020) (0.006)

Peer is a woman 0.023 0.028+

(0.048) (0.017)

Control mean 0.275 0.275 0.039 0.039
Observations 7343 7343 7852 7852

Notes: The dependent variable is an indicator that i reported j as rel-
evant peer (i) conditional on i and j being in the same group ; and (ii)
unconditionally, which means i and j could have never met for class work.
Each observation in case (i) is a pair i and j in each group they share.
In case (ii), each observation is every potential pair ij. Standard errors
clustered by student and peer in parentheses. + p < 0.1, ∗ p < 0.05

Now, we turn to columns 3 and 4, which present estimates for equation 2. This time, control
mean reports that there is a 3.9% chance that a survey respondent indicates a peer that does
not share any group with him to be in a group of a subsequent course. The estimate of 3.8
pp in column 3 shows that interacting in at least in one group doubles that chance. Further,
conditional on interacting at least once, the additional effect of meeting in more than one group
is 6.7 pp, which means again a huge increase of 87% in the chance of reporting a peer compared
to 7.7% rate of those meeting once. Column 4 shows that peers’ characteristics are not driving
peer report either.

Each measure of peer report – conditional or unconditional – and results associated to each
one suggest

5.2 Effects on performance

Table 5 shows estimates for equations 3, 4 and 5 and, for the latter, also reports results
separately for the subgroups of low and high-ability students. The first column shows that with
the most basic specification there is no evidence of peer effects on performance. In this exercise,
the coefficient on High peers is close to zero and not statistically significant. It would give an
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estimate of the average effect of adding one high-ability peer in replacement of a low-ability
one since group size and the number of other peers are constant.

Table 5: Peer effects on performance

Dependent variable: Standardized exam

All Students Only High Only Low

(1) (2) (3) (4) (5)

High Peers 0.001 -0.032 -0.029 0.001 -0.052
(0.017) (0.025) (0.026) (0.031) (0.045)

Frequent Low Peers (%) × Low Peers -0.012 0.001 -0.013 -0.002
(0.023) (0.026) (0.037) (0.044)

Frequent High Peers (%) × High Peers 0.051* 0.045* 0.052 0.035
(0.023) (0.022) (0.033) (0.035)

Low Peers in other groups -0.007 -0.011 0.004
(0.017) (0.024) (0.020)

High Peers in other groups 0.013 0.023+ 0.005
(0.010) (0.013) (0.017)

Observations 791 791 791 427 364
Students 135 135 135 135 135
Groups 67 67 67 67 67

Notes: Standard errors clustered by student and groups in parentheses. + p < 0.1, ∗ p < 0.05

Following the discussion about the problems of this basic peer effects specification, column
2 adds interactions of the number of low and high-ability peers with the fraction of these
peers that appear in some other group. Since we did not find any effect by solely changing
group composition, this allows us to look at what happens following a change in the potential
interaction of peers.

It is simpler to interpret the result with an example. Suppose in a given group we will
keep constant the total number of low or high-ability groups. Also consider that, initially, none
of the low-ability peers of a given student in this group appears in some other group. The
coefficient on Frequent Low Peers (%) × Low Peers shows what would be the average effect on
the student’s performance if we replace all these nonfrequent low-ability peers with other low-
ability peers interacting with the student also in some other group. That is, given the number
of low-ability peers, the effect of having 100% of them as frequent peers compared to having
zero. Results show that the estimate for this case is statistically zero. However, applying the
same reasoning to high-ability peers, the estimate of 0.051 now indicates that there would be a
positive and significant effect. On average, half of a student’s high-ability peers in a group fall
into the category of frequent peers. If we would replace all non-frequent high-ability peers with
high-ability frequent peers, the average effect on performance would be 0.5 × 0.051 = 2.5% of
a standard deviation.

Yet, for two students in the same group, it is more likely that the fraction of frequent high-
ability peers in the group is greater for the one who meets a larger number of high-ability peers
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in all other groups. If high-ability peers positively impacted performance, then the estimate of
0.051 would be upward biased by this feedback from interaction in other groups. This is why
we include in column 3 the total exposition to low and high-ability peers outside the group as
controls in the regressions (equation 5). The coefficient on Frequent High Peers (%) × High
Peers falls to 0.045, which means that, by the same above argument, replacing all non-frequent
high-ability peers with other frequent high-ability peers would have an average effect of 2.2%.

Finally, we separate the analysis by groups of ability in columns 4 and 5. The effects of
high-ability frequent peers are no longer statistically significant, and this might be a result of
losing statistical power since regressions now use smaller samples. However, point estimates are
still positive and suggest that the effect would be stronger for high-ability students (+5.2% of
an sd) than for low-ability ones (+3.5% of an sd). Besides, the estimate on High peers suggests
that for high-ability students, changing the number of high-ability peers would not have any
effect as long as the share of frequent high-ability peers remains constant. The same does not
apply to low-ability students: there would be a negative effect of having more high-ability peers
(-5.2% of an sd), but this could be at least partially offset if some of them were frequent peers.
We explore this in more detail in the next exercise.

5.3 Heterogeneous effects of group change

The median group in our sample is composed of six high-ability and six low-ability students.
Suppose we want to evaluate the average effect of replacing one low-ability student with a high-
ability student. That is, we would like to compare the expected outcome in a new group with
seven high-ability and five low-ability students to the expected outcome with the previous group
formation.

The previous discussion suggests that to perform this analysis we should consider both the
heterogeneity along students’ ability levels and whether the replacement of students changes
the fraction of frequent peers a given student will have in the group. In this exercise, we will
consider two polar cases in terms of the potential interaction induced by such change: (i) Less
interaction: the addition of a nonfrequent high-ability peer in replacement of a frequent low-
ability one; and (ii) More interaction: the addition of a frequent high-ability peer in replacement
of a nonfrequent low-ability. Based on estimates from equation 5, the next figures report
point estimates and confidence intervals for the appropriate linear combination of coefficients
representing the effect in each case for the desired outcome.

5.3.1 Effects on performance

Figure 2 shows that low-ability students would face an average decrease of 5% of a standard
deviation in performance if the change reduced their potential interaction within the group and
considering a 90% confidence interval we reject the hypothesis of no effect. However, if the same
group composition was done by increasing their potential peer interaction, the point estimate
falls to -0.01, but intervals at usual confidence levels now include zero. The importance of
peer interaction is also evident when the exercise considers the subset of high-ability students.
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Low-ability student High-ability student

95% CI 90% CI Estimate

Figure 2: Effects on performance – Less interaction means the addition of a nonfrequent
high-ability peer in replacement of a frequent low-ability one; more interaction means the
addition of a frequent high-ability peer in replacement of a nonfrequent low-ability.

Moving from the change that decreases interaction to the one increasing it, the estimate goes
from 1% to 5% of a standard deviation increase, and zero is barely within the 90% confidence
interval in the latter case.

5.3.2 Effects on network position

If the previous results are indeed explained by differences in potential interaction induced
by the group change, we should see effects on actual interaction. To test this hypothesis we
will use the subset of students that responded to the survey and assume that if there is a link
between two students, then both students should report each other in the survey.3

Results from columns 3 and 4 of table 4 already show that increased interaction between
pairs of students makes it more likely the unilateral report the desire of having a peer in
subsequent groups. Now, for each pair of students in each group, we compute an indicator of
whether there is a match in such a report. That is, the variable is equal to one if students
forming a pair reported each other in the survey. Finally, the dependent variable to be used in
equation 5 is an indicator of whether a student has any match in the group.

In groups composed of six high-ability and six low-ability students, there is a 23% chance
that a given student has match in peer reporting. Thus, the statistically significant estimates
of 0.06 and 0.05 in figure 3 shows that changing group composition with an increase in the
potential interaction means roughly a 22% increase in the chance of having a match in the

3Here we use the unconditional report as we believe this is a stronger measure of the interaction between
two students.
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Figure 3: Effects on network position – Less interaction means the addition of a non-
frequent high-ability peer in replacement of a frequent low-ability one; more interaction
means the addition of a frequent high-ability peer in replacement of a nonfrequent low-
ability.

group. We interpret this as an evidence that increased actual interaction is what explain the
attenuation of a negative peer effects for low-ability students and the positive peer effects for
high-ability ones.

6 Conclusion

Using data of students in higher education in an active learning environment we showed
that increased opportunity for peers to meet is an important way to strengthen peer interaction
so that positive spillovers on performance arise.

Actually, increase interaction with high-ability peers attenuate negative peer effects from
high-ability peers on low-ability students and explain positive peer effects on high-ability stu-
dents. In short, estimates relying solely on the variation of the share of low and high-ability
peers could not reflect this important heterogeneity in the potential and actual interaction
between the two groups.

A back-of-the-envelope calculation assuming that the maximization of the frequency of
interaction with high-ability has a homogeneous effect for high-ability students indicates a
9.9% increase in average performance (not standardized). It is important to understand if this
is a persistent effect since we analyze students in their first exams at university. Finally, a word
of caution is needed since our results still come from reduced-form estimates, and – as evidence
has shown – it may fail to uncover important endogenous peer responses.
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A Appendix

A.1 Survey responses

Table 6 shows the output of a logistic regression where the dependent variable is an indicator
of survey response. Women were more liklely to answer the questionnaire, but responding is
not related to student’s ability.

Table 6: Probability of responding to the survey

Answered
Math Ability Score 0.12

(0.25)
Writing Ability Score -0.06

(0.20)
Woman 1.57∗∗

(0.64)
Low-ability student -0.51

(0.62)
Mid-ability student -0.70

(0.58)
Observations 135

Robust standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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