
A No-Arbitrage Approach to Asset Pricing using

Panel Data Asymptotics∗

Fabio Araujo

Brazilian Central Bank

email: fabio.araujo@bcb.gov.br

João Victor Issler

Brazilian School of Economics and Finance FGV EPGE

Getulio Vargas Foundation

email: joao.issler@fgv.br†

February, 2022

Keywords: Stochastic Discount Factor, No-Arbitrage, Panel-Data

Econometrics, Common Features.

J.E.L. Codes: C32, C33, E21, E44, G12.

1



Abstract

We propose a no-arbitrage framework related to stochastic discount factors (or

pricing kernels) that takes seriously the consequences of no-arbitrage in asset pric-

ing. First, we derive a no-arbitrage one-factor model for the logarithm of asset

returns, where the single factor is the logarithm of a valid stochastic discount fac-

tor, containing all the pervasive elements of (log) asset returns. Second, based on

this one-factor model, we derive a consistent estimator of a valid SDF in a panel-

data framework, when the number of assets and of time periods increase without

bounds. Identification of a valid SDF is based on economic theory —no-arbitrage,

the asset-pricing equation. The asymptotic character of this no-arbitrage SDF esti-

mator is opposed to standard small-sample alternatives where it is hard to interpret

empirical results since these often change when different groups of assets are used

in estimation. In theory, asymptotic estimates are immune to this problem.

Based on a consistent estimator for a valid SDF, we first investigate which type of

utility function best fits U.S. data among popular preference specifications in the lit-

erature: the constant-relative-risk-aversion (CRRA) coeffi cient utility function; the

external habit utility function; and the Kreps-Porteus specification. Second, using

estimation results, we present a no-arbitrage simulation study assessing how close

our consistent SDF estimator is to actual SDF for medium-size panel-data samples.

Finally, we estimate a multi-effect linear regression model that allows for parameter

heterogeneity in the intercept and in its slope that is consistent with our derived

one-factor model. Using regression results we assess how well this heterogeneous

one-factor model fits the cross-section and time-series data of assets returns.
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1 Introduction

In this paper, we propose a no-arbitrage framework related to stochastic discount factors

(or pricing kernels) that takes seriously the consequences of the Asset-Pricing Equation

established by Harrison and Kreps (1979), Hansen and Richard (1987), and Hansen and

Jagannathan (1991, 1997). There, conditional on current information, asset prices today

are a function of their expected future discounted payoffs using a stochastic discount

factor (SDF).

If the Asset-Pricing Equation is valid for all assets at all times, it can serve as a basis

to construct a whole new framework with the following ingredients. First, based on a

no-arbitrage identification assumption, we derive a one-factor model for the logarithm

of asset returns, where the single factor is the logarithm of a valid stochastic discount

factor. Following the SDF literature, we interpret the factor as containing all the perva-

sive elements of (log) asset returns, allowing a pervasive-idiosyncratic decomposition of

these returns, where the intercept and slope parameters contain heterogeneous responses

(heterogeneous level and factor loadings). Second, based on this one-factor model, we

derive a consistent estimator of a valid SDF in a panel-data framework, where the num-

ber of assets and of time periods increase without bounds. The asymptotic character of

this SDF estimator differs from SDFs estimated using small samples, where it is hard

to interpret empirical results since these often change when different groups of assets are

employed in estimation. From a theoretical perspective, asymptotic estimates are immune

to this problem, which increases their potential application in empirical studies. This is

especially true in the big data era.

The core idea behind our consistent SDF estimator can be explained employing a

simplified version of the asset-pricing equation as in Hansen and Singleton (1983): given

no-arbitrage, and using a joint log-Normal specification for returns and a valid stochastic

discount factor, we note that there exists a log-linear factor model for the (log of) returns,

where the factor is a valid (log) SDF, which only varies across time, whereas returns and

other elements in the factor model vary across time and assets. Then, we exploit the cross-

sectional variation of returns to propose an asymptotically biased estimate of a valid SDF.
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To remove the asymptotic bias, we rely on economic theory —once again employing the

Asset-Pricing Equation —exploiting its time-series variation to construct a no-arbitrage

estimator of a valid SDF. The latter constitutes our major identification assumption. Our

consistent estimator of a valid SDF is a simple function of the arithmetic and geometric

averages of asset returns alone and does not depend on any parametric function used to

characterize preferences. On the Appendix, we show that our approach can be replicated

using a general Taylor Expansion of the Asset-Pricing Equation, deriving a one-factor

model for the logarithm of returns that does not impose conditional joint log-Normality

for returns and a valid SDF.

A benefit of our approach is that we are able to study intertemporal asset pricing

without the need to characterize preferences or to use consumption data, in a setting

similar to that of Hansen and Jagannathan (1991, 1997). This yields several advantages

of our SDF estimator over possible alternatives. First, since it does not depend on any

parametric assumptions about preferences, there is no risk of misspecification in choos-

ing an inappropriate functional form for SDF estimation. Moreover, our estimator can

be used to test directly different parametric-preference specifications commonly used in

finance and macroeconomics. Second, since it does not depend on consumption data,

our estimator does not inherit the smoothness observed in previous consumption-based

estimates, which generated important puzzles in finance and in macroeconomics, such as

the equity-premium puzzle, excess sensitivity (excess smoothness) in consumption, etc.;

see Flavin (1981), Hansen and Singleton (1982, 1983, 1984) Mehra and Prescott (1985),

and Campbell and Deaton (1989).

Our approach is related to research done in different fields. From econometrics, it

is related to the common-feature literature after Engle and Kozicki (1993), since the

SDF can be viewed as a common feature (factor) of asset returns. Indeed, we attempt

to bridge the gap between a large literature on serial-correlation common features ap-

plied to macroeconomics, e.g., Vahid and Engle (1993, 1997), Engle and Issler (1995),

Issler and Vahid (2001, 2006), Hecq, Palm and Urbain (2006), Issler and Lima (2009),

Athanasopoulos et al. (2011), and the financial econometrics literature related to the SDF
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approach, best represented by the work of Garcia, and Renault (2001), Rosenberg and

Engle (2002), Bansal and Yaron (2004), Hansen and Scheinkman (2009), Pukthuanthong

and Roll (2015), Christensen (2017), and Almeida, Ardison, and Garcia (2020). It is also

related respectively to work on common factors in macroeconomics and in finance; see

Stock and Watson (2002), Forni et al. (2000, 2005), Bai and Ng (2002, 2004), and Bai

(2009), as examples of the former, and a large literature in finance based on the work of

Fama and French (1992, 1993, 1996, 2015), Lettau and Ludvigson (2001), Sentana (2004),

Sentana, Calzolari, and Fiorentini (2008), Harvey, Liu, and Zhu (2016), Campello, Galvão

and Juhl (2019), Kozak, Nagel, and Santosh (2019) and Giglio, Kelly, and Xiu (2021) as

examples of the latter. From macroeconomics, it is also related to panel-data studies

testing optimal behavior in consumption, e.g., Runkle (1991), Attanasio and Browning

(1995), Attanasio and Weber (1995), and Gomes and Issler (2017).

Empirically, based on a consistent estimator for a valid SDF, we first investigate which

type of utility function best fits U.S. data among popular preference specifications used in

the literature: the constant-relative-risk-aversion (CRRA) coeffi cient utility function; the

external habit utility function; and the Kreps-Porteus specification proposed by Epstein

and Zin (1991). Second, using estimation results, we present a no-arbitrage simulation

study assessing how close our consistent SDF estimator is to actual SDF for medium-size

panel-data samples. Finally, we estimate a multi-effect linear regression model that allows

for parameter heterogeneity in the intercept and in its slope that is consistent with our

derived one-factor model. Using regression results we assess how well this heterogeneous

one-factor model fits the cross-section and time-series realizations of assets returns.

In our first application, with quarterly data, ultimately using thousands of assets

available to the average U.S. investor, our estimator of the SDF is close to unity most

of the time, with an equivalent average real annual discount factor of 0.96. When we

examined the appropriateness of different functional forms to represent preferences (Power

Utility, External Habit and Kreps-Porteus), we concluded that none of these standard

preference representations are rejected by the data. However, since the External-Habit

and the Kreps-Porteus specifications encompass the Power Utility specification, and we
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have not rejected a role for habit in the first, and for the return of the optimal portfolio

in the second, we conclude that these two are our preferred specifications. It should be

noted that these results are aligned with the current dominant view in the macro-finance

literature: Campbell and Cochrane (1999) propose the external habit model to solve

well-known puzzles in finance, whereas Epstein and Zin’s model, separating risk aversion

and intertemporal substitution, is a preferred specification in the asset-pricing literature

following the work of Bansal and Yaron (2004).

In our second application, we generate data using a no-arbitrage dynamic (consump-

tion) capital asset-pricing model and employ it to investigate how close our proposed

estimate is to the actual SDF across simulations. The model is mid-size in terms of ob-

servations in the time-series (100) and the cross-sectional (1, 000) dimensions. It entails

heterogeneity in the first and second moments of asset returns, despite a predominant

role for the common component represented by the SDF, which can generate sizable cross

correlations among returns, depending on the value of the relative risk-aversion coeffi -

cient. On average, the proposed estimator is very close to the actual SDF, despite the

fact that we employ a relatively small sample vis-a-vis the asymptotic framework. This

result survives robustness-analysis exercises on several dimensions.

In our third application, we try to approximate the asymptotic environment with

monthly U.S. time-series return data from 1980:1 through 2020:12 (T = 492 observations),

collected for N = 102, 698 assets, grouped in the following four categories: mutual funds

(68, 085), stocks (29, 627), real-estate investment trusts REITs (1, 000), and government

bonds (3, 986). Our estimate of Mt has an average of 0.9958 on a monthly basis, which

amounts to 0.9504 on an equivalent yearly basis. We employed themixed-effect panel-data

model (also known as the mixed linear model) to assess the fit of our one-factor model

to the data using our estimate of the SDF. This model takes into account individual

heterogeneity in regression coeffi cients in estimation. Despite the fact that our sample

includes the 1987 Black Monday episode, the burst of the Dotcom Bubble, the Great

Recession, and the recent Covid-19 pandemic, the results show a good in-sample fit for

our panel of returns, where fitted and actual values are aligned close to the 45 degree line,
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with the exception of a few outliers associated with those episodes.

The next Section presents basic theoretical results, our estimation techniques, and a

discussion of our main result. Section 3 shows the results of empirical tests in macro-

economics and finance using our estimator: estimating preference parameters using the

Consumption-based Capital Asset-Pricing Model (CCAPM), a Monte-Carlo simulation

study comparing the actual SDF with our consistent estimator for mid-size panel sam-

ples, and finally and evaluation of how well our factor models fits in-sample a large panel

data of asset returns. Section 4 concludes. A Technical Appendix contains our main

results re-stated without the use of stringent assumptions used in the simplified version

of the one-factor model.

2 Economic Theory and an SDF Estimator

2.1 The Core Idea

Harrison and Kreps (1979), Hansen and Richard (1987), and Hansen and Jagannathan

(1991) describe a general framework to asset pricing, associated with the stochastic dis-

count factor (SDF), which relies on the Asset-Pricing Equation1:

Et−1 {Mtxi,t} = pi,t−1, i = 1, 2, . . . , N, or, (1)

Et−1 {MtRi,t} = 1, i = 1, 2, . . . , N, (2)

where Et(·) denotes the conditional expectation given the information available at time

t, Mt is a stochastic discount factor, pi,t denotes the price of the i-th asset at time t, xi,t

denotes the payoff of the i-th asset in t, Ri,t =
xi,t
pi,t−1

denotes the gross return of the i-th

asset in t, and N is the number of assets in the economy.

The existence of a SDF Mt that prices assets in (1) is obtained under very mild

conditions. In particular, there is no need to assume a complete set of security markets.

Uniqueness of Mt, however, requires the existence of complete markets. If markets are

1See also Rubinstein (1976) and Ross (1978).
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incomplete, i.e., if they do not span the entire set of contingencies, there will be an infinite

number of stochastic discount factors Mt pricing all traded securities. Despite that, there

will still exist a unique discount factorM∗
t , which is an element of the payoff space, pricing

all traded securities. Moreover, any discount factor Mt can be decomposed as the sum of

M∗
t and an error term orthogonal to payoffs, i.e., Mt = M∗

t + νt, where Et (νtxi,t) = 0.

The important fact here is that the pricing implications of any Mt are the same as those

of M∗
t , also known as the mimicking portfolio.

We now state the basic assumptions needed to construct our approach and our con-

sistent estimator of Mt:

Assumption 1 (Absence of Arbitrage Opportunities): We assume the absence of

arbitrage opportunities in asset pricing, c.f., Ross (1976). This must hold for all

t = 1, 2, ..., T .

Assumption 2 (Joint Weak Stationarity and Ergodicity): Let

Rt = (R1,t, R2,t, ... RN,t)
′ be anN×1 vector stacking all asset returns in the economy

and consider the scalar process {ln (Mt)} and the vector process {ln (Rt)}. We

assume that {ln (Mt)} and {ln (Rt)} are jointly covariance-stationary processes with

finite first and second moments across assets (i). We also assume that {ln (Mt)},

{ln (Rt)}, and {ln (MtRt)} are ergodic processes.

Assumption 1 is a necessary and suffi cient condition for the Pricing Equation (2) to

hold. Equation (2) is essentially equivalent to the “law of one price”—where securities

with identical payoffs in all states of the world must have the same price.

The absence of arbitrage opportunities has also two other important implications.

The first is there exists at least one stochastic discount factor Mt, for which Mt > 0;

see Hansen and Jagannathan (1997). This is due to the fact that, when we consider

the existence derivatives on traded assets, arbitrage opportunities will arise if Mt ≤ 0.

Positivity of Mt is required here because we will take logs of Mt. The second implication

is that the absence of arbitrage requires that a weak law-of-large numbers (WLLN) holds

in the cross-sectional dimension for the level of gross returns Ri,t (Ross (1976, p. 342)).
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This controls the degree of cross-sectional dependence in the data and constitutes the

basis of the arbitrage pricing theory (APT).2

Assumption 2 controls the degree of time-series dependence in the data. Joint covariance-

stationarity for {ln (Mt)} and {ln (Rt)} implies that each of these processes is covariance

stationary and linear combinations of the form {a ln (Mt) IN + b ln (Rt)} are also covari-

ance stationary for any two finite arbitrary constants a and b. We are particularly in-

terested in a = b = 1, which would yield covariance-stationarity for {ln (MtRt)} as well.

Assumption 2 disciplines the data being used to form SDF estimators and there is little

one can do in a world where covariance-stationarity and ergodicity do not hold.

Here, we seek a linear logarithmic representation for Mt and Rt, in the simplest way

possible in order to convey the core idea of this paper. To do so, we follow the basic

assumptions in Hansen and Singleton (1983) to prove our main result. However, in the

Appendix, we show that this result holds under a much less restrictive set of assumptions.

Hansen and Singleton assume joint conditional log-Normality for ln (Mt) and ln (Rt) and

homoskedasticity (across time) for conditional variances. This allows to solve explicitly

equation (2) to obtain:

ri,t = −mt −
1

2
σ2
i + εi,t, i = 1, 2, · · · , N, (3)

where ri,t = ln (Ri,t), mt = ln (Mt), and (mt + ri,t) − Et−1 (mt + ri,t) = εi,t ∼ N (0, σ2
i ).

Although in the time dimension εi,t is a martingale difference, i.e., Et−1 (εi,t) = 0, it

can have strong cross-sectional dependence. Of course, we could expand the formula for

σ2
i = σ2

m + σ2
ri

+ 2COV(mt, ri,t), where σ2
m is the variance of mt and σ2

ri
is the variance of

ri,t, but at this point we wish to keep the notation simple enough to convey our core idea.

Since (3) holds for all i, but mt does not vary across i, one is tempted to cross-

sectionally aggregate it as follows:

1

N

N∑
i=1

ri,t = −mt −
1

2

1

N

N∑
i=1

σ2
i +

1

N

N∑
i=1

εi,t, (4)

2In that sense, as the number of assets in Rt increases, we should avoid piling up assets related
essentially to the same risk factors, such as a stock and several derivatives attached to it.
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to obtain a consistent estimator of mt, which will be based on 1
N

∑N
i=1 ri,t. However, it is

unclear whether or not:
1

N

N∑
i=1

εi,t
p−→ 0. (5)

Recall that,

εi,t = (mt + ri,t)−Et−1 (mt + ri,t) = (mt − Et−1 (mt))+(ri,t − Et−1 (ri,t)) = εmt +µi,t, (6)

where εmt and µi,t are innovations to mt and ri,t, respectively. There is an explicit part of

εi,t that depends on mt alone, εmt , which does not vary across i. The other part, µi,t, also

depends on εmt . Consider now:

1

N

N∑
i=1

εi,t =
1

N

N∑
i=1

(
εmt + µi,t

)
. (7)

In order to have:

plim
N→∞

1

N

N∑
i=1

εi,t = 0, we need, plim
N→∞

1

N

N∑
i=1

µi,t = −εmt ,

which seems at first as a knife-edge case.

Indeed, this is not true. And the reason is simple, mt is a latent factor. As the

pioneering work of Lawley and Maxwell (1971) forcefully shows, there is an inherent

indeterminacy problem to identify factors and their respective loadings. To be able to

identify mt, we are allowed to choose the scale for mt itself, and therefore to its innovation

εmt . Instead of dealing with the innovations ε
m
t and µi,t, we can look directly at the role

of εi,t in (3). What may prevent the law-of-large numbers to hold in the cross-sectional

dimension is the existence of a pervasive element in εi,t. Based on asset-pricing theory, all

the pervasive factors for returns are in mt. So, as long as we can make εi,t devoid of mt,

we could apply the law-of-large numbers. Consider now an OLS-projection of εi,t onto
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mt − E (mt) to obtain:

εi,t = δi (mt − E (mt)) + ξi,t, where δi =
COV (εi,t,mt)

VAR (mt)
, (8)

which delivers a pervasive-idiosyncratic decomposition of εi,t, where ξi,t is the idiosyncratic

part and δi (mt − E (mt)) is the pervasive part associated with the stochastic discount

factor.3 If we combine (3) with (8), we obtain an affi ne beta-model for the log of asset

returns, ri,t, where there is a single factor —the log of a valid SDF, mt:

ri,t = −
(

1

2
σ2
i + δiE (mt)

)
+ βimt + ξi,t, i = 1, 2, · · · , N , where, (9)

βi = −1 + δi,

and its error term ξi,t is idiosyncratic by construction. Moreover, whereas (3) is not a

proper beta model, since all assets have the same beta-coeffi cient for the factor mt, in (9)

the loadings for mt vary with i —a standard feature of the whole literature in finance. So,

this is a proper factor model with a single factor. However, it does not apply to returns,

but to their logarithms.

A cross-sectional average of (9) yields:

plim
N→∞

1

N

N∑
i=1

ξi,t = 0, (10)

which gives:

plim
N→∞

1

N

N∑
i=1

ri,t =

(
lim
N→∞

1

N

N∑
i=1

βi

)
mt − lim

N→∞

1

2

1

N

N∑
i=1

σ2
i −

(
lim
N→∞

1

N

N∑
i=1

δi

)
E (mt)

= βmt − σ2, (11)

3Since εi,t is a martingale-difference:

0 = Et−1 (εi,t) = δiEt−1 (mt − E (mt)) + Et−1
(
ξi,t
)
,

which guarantees that ξi,t has a zero unconditional mean, using the law of iterated expectations.
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as long as−∞ < lim
N→∞

(
1
2

1
N

∑N
i=1 σ

2
i + 1

N

∑N
i=1 δiE (mt)

)
= σ2 <∞ and−∞ < lim

N→∞
1
N

∑N
i=1 βi =

β <∞. Hence, 1
N

∑N
i=1 ri,t will consistently estimatemt apart from two bounded constant

terms: σ2 and β. In the log-linear beta model (9), the former is an intercept bias term

and the latter is a slope bias term.

We now discuss identification of mt and of Mt from equation (11). One key element

of the identification strategy in this paper is that we will use economic theory to be able

to identify Mt. Indeed, we want to keep our estimator as a no-arbitrage estimator of Mt.

Then, the only possible tool at hand to recover any of these bias terms is to employ the

asset-pricing equation itself, i.e., equation (2): we have just one restriction to identify two

parameters and need an extra restriction, consistent with equation (2).

One critical issue for identification is that the asset-pricing equation applies to the level

of a valid SDF,Mt = exp (mt), but (11) offers a consistent estimator for an affi ne function

of its logarithm, mt. This is not a problem: the exponential function is continuous, so

we can resort to the Continuous Mapping Theorem. Multiply (9) by minus one, take its

cross-sectional average, and obtain:

− 1

N

N∑
i=1

ri,t = −
(

1

N

N∑
i=1

βi

)
mt +

1

2

1

N

N∑
i=1

σ2
i +

1

N

N∑
i=1

δiE (mt)−
1

N

N∑
i=1

ξi,t. (12)

As N →∞, apply the Continuous Mapping Theorem to obtain:

plim
N→∞

N∏
i=1

R
− 1
N

i,t = exp
(
σ2
)
×M−β

t . (13)

Trying to match the right-hand side of (13) to the asset-pricing equation (2), it is

important to note that the asset-pricing equation only applies toMt with unit power. So,

a natural starting point to identify σ2 is to assume that:

lim
N→∞

1

N

N∑
i=1

βi = β = −1, implying, plim
N→∞

N∏
i=1

R
− 1
N

i,t = exp
(
σ2
)
×Mt. (14)

Indeed (14) is the critical identification assumption used in this paper. It is consistent
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with the Asset-Pricing Equation since it allows us to further employ it to identify σ2 as

our next step —given that now the right-hand side of the implied equation in (14) shows

Mt with unit power. So, we label it a no-arbitrage identification assumption.

Assumption 3 (No-Arbitrage Identification): We assume that (14) holds, i.e., that

lim
N→∞

1
N

∑N
i=1 βi = β = −1.

Under Assumption 3, as N →∞, we obtain:

R
G

t =

N∏
i=1

R
− 1
N

i,t

p−→ exp
(
σ2
)
×Mt, (15)

where R
G

t is the geometric average of reciprocals of returns with equal weights 1/N .

Note that Assumption 3 implies that lim
N→∞

1
N

∑N
i=1 δi = 0, therefore:

lim
N→∞

(
1

2

1

N

N∑
i=1

σ2
i +

1

N

N∑
i=1

δiE (mt)

)
= lim

N→∞

1

2

1

N

N∑
i=1

σ2
i = σ2.

We are now left with the task of obtaining a consistent estimate for exp
(
σ2
)
to

consistently estimate Mt. Multiply equation (2) by exp
(
σ2
)
to get:

Et−1

{
exp

(
σ2
)
MtRi,t

}
= exp

(
σ2
)
, i = 1, 2, . . . , N. (16)

Take now the unconditional expectation of (16), use the law-of-iterated expectations,

and average across i = 1, 2, ..., N , to get:

exp
(
σ2
)

=
1

N

N∑
i=1

E
{

exp
(
σ2
)
MtRi,t

}
= E

{
exp

(
σ2
)
Mt

1

N

N∑
i=1

Ri,t

}
. (17)

Now, recall that (15) offers R
G

t as a consistent estimator for exp
(
σ2
)
×Mt. If we

replace the latter with the former, as T →∞, we can then obtain a consistent estimator
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for exp
(
σ2
)
as follows:

̂
exp

(
σ2
)

=
1

T

T∑
t=1

(
N∏
i=1

R
− 1
N

i,t

1

N

N∑
i=1

Ri,t

)
=

1

T

T∑
t=1

R
G

t R
A

t , (18)

where R
A

t = 1
N

∑N
i=1Ri,t is the arithmetic average of returns.

Note that the estimator of exp
(
σ2
)
is the sample counterpart of the right-hand-side

of (17) in the time dimension, when we replaced exp
(
σ2
)
Mt with its consistent estimator

R
G

t . Finally, taking into account the results in (15) and in (18), we are able to propose a

consistent estimator for Mt as the ratio:

M̂t =
R
G

t

1
T

∑T
j=1 R

G

j R
A

j

.

This is a simple function of the arithmetic average of returns, R
A

t , and the geometric

average of the reciprocal of returns, R
G

t , both using equal weights 1/N .

One important technical issue is that we need to let N → ∞ first, before letting

T →∞. This happens because we have substituted exp
(
σ2
)
Mt in (17) by its consistent

estimator R
G

t before constructing (18) using the time dimension. We now state our main

result.

Proposition 1 Using the setup of Hansen and Singleton (1983) and Assumptions 1-3,

the following holds:

plim
(N,T→∞)seq .

R
G

t

1
T

∑T
j=1 R

G

j R
A

j

= Mt,

for all t, where (N, T → ∞)seq denotes the sequential asymptotic approach proposed by

Phillips and Moon (1999), when we let first N →∞, and then let T →∞.

It is important to note that M̂t is a function of N and T . The denominator explicitly

shows that it depends on T and dependence on N is implicit since R
G

t and R
A

t are

respectively geometric and arithmetic averages in the cross-sectional dimension. The

only reason why we do not explicitly state its dependence on N and T is to avoid a
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cumbersome notation for M̂t.

2.2 Discussing Identification

The Asset-Pricing Equation is a non-linear function of a valid SDF and of individual

returns. But, we have shown above how to derive an exact log-linear relationship between

returns and a valid SDF, which allows for a natural one-factor affi ne model linking ri,t,

i = 1, 2, · · · and mt. Our SDF estimator is constructed using large-sample techniques

under no-arbitrage, with N → ∞ first, and then T → ∞, since it relies on the existence

of the Asset-Pricing Equation (2) to generate (9) and then imposes (14) to employ once

again (2) to identify σ2 and them Mt. The latter is a no-arbitrage assumption because

equation (2) only holds with a unit power for Mt. In our setup, the natural choice to

identify and estimate of exp
(
σ2
)
is to use the additional assumption that β = −1.

Technically speaking, σ2 and β are not separately identifiable, setting β = −1 identifies

both under no-arbitrage.

Recall that our proposed affi ne beta-model is as follows:

ri,t = −
(

1

2
σ2
i + δiE (mt)

)
+βimt+ ξi,t, i = 1, 2, · · · , N , where, βi = −1+δi. (19)

In the context of equation (19), from the seminal work of Lawley and Maxwell (1971),

the indeterminacy problem for factor models can be explained by the following equation:

β̃im̃t =
(
β̃iκ

−1
)

(κm̃t) = βimt, (20)

i.e., a factor and its respective loadings are indentifiable only up to multiplication by

non-zero finite scalars κ−1 and κ, which make equation (20) hold. Clearly, κ determines

the scale of mt and also the mean of βi. Suppose, for example, that:

lim
N→∞

1

N

N∑
i=1

β̃i = λ 6= −1,

15



then, we can set κ = −λ, which will make lim
N→∞

1
N

∑N
i=1 βi = λ (−λ)−1 = −1, allowing

(19) to hold for βimt with lim
N→∞

1
N

∑N
i=1 βi = −1.

A solution for this same problem is also present in principal-component analysis —a

traditional method for identifying factors and factor loadings; see, e.g., Stock and Watson

(2002). Denote by Σr = E
{

[rt − E (rt)] [rt − E (rt)]
′} the variance-covariance matrix of

logged returns, where rt is an N × 1 vector of returns. The first principal component is

identified as the first factor. It is chosen to be a linear combination α′ (rt − E (rt)) with

maximal variance α′Σrα. As is well-known, the problem has no unique solution, since we

can make α′Σrα as large as we want by multiplying α by a constant scale c > 1. Indeed,

we are facing the same scale problem present in equation (20). In a fixed N setting, the

solution is to constrain the variance of the first principal component by imposing that α

has unit norm, i.e., that α′α = 1.

Our identification strategy
(

lim
N→∞

1
N

∑N
i=1 βi = −1

)
imposes:

lim
N→∞

1

N

N∑
i=1

δi = 0, (21)

i.e., in the limit, the projection coeffi cients of εi,t ontomt−E (mt) must cancel out exactly.

From a different angle, compute the innovations ri,t−Et−1 (ri,t) in the beta-model (9)

to obtain:

µi,t = βiε
m
t + ξi,t,

which makes:

plim
N→∞

1

N

N∑
i=1

µi,t = βεmt . (22)

Using our decomposition in (6), we can also perform an OLS projection of µi,t onto

εmt , as follows:

µi,t = τ iε
m
t + ζ i,t, where τ i =

COV
(
µi,t, ε

m
t

)
VAR (εmt )

,

where the τ iεmt term captures the pervasive portion of µi,t, and ζ i,t captures the idiosyn-
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cratic portion. This implies that:

plim
N→∞

1

N

N∑
i=1

µi,t = τεmt , (23)

where −∞ ≤ lim
N→∞

1
N

∑N
i=1 τ i = τ ≤ ∞, and plim

N→∞

1
N

∑N
i=1 ζ i,t = 0.

It is instructive to compare (22) and (23): our identification assumption imposes

β = τ = −1 to deliver the exact scale for εmt —and thus the scale for mt, and the power

for Mt —to be able to apply the Asset-Pricing Equation to identify exp
(
σ2
)
and then

Mt. As argued above, solving a scale problem is intrinsic to factor-model analysis —a

choice must be made. We chose to use economic theory (no-arbitrage, the asset-pricing

equation) to identify β, exp
(
σ2
)
and then Mt.

Under our identification assumption, we obtain the following:

mt = −plim
N→∞

1

N

N∑
i=1

ri,t − σ2,

where the following variance restriction holds in the time dimension:

plim
N→∞

VAR

(
1

N

N∑
i=1

ri,t

)
= VAR (mt) .

These results map mt into the negative of the return of an equally weighted market-

portfolio, which validates a limiting beta of −1.

2.3 Properties of the Mt Estimator

The first property of our estimator ofMt, labelled M̂t, is that it is in the no-arbitrage class

of SDF estimators, since it is based on the asset-pricing equation and uses it to identify

Mt. Moreover, it is completely non-parametric and a function of asset-return data alone.

Whatsoever, no assumptions about preferences have been made in identification.

Second, because M̂t is a consistent estimator, it is interesting to discuss to what

it converges to. Here, we must distinguish between complete and incomplete markets
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for securities. In the complete markets case, there is a unique positive SDF pricing all

assets, which is identical to the mimicking portfolio M∗
t . Since our estimator is always

positive, M̂t converges to this unique pricing kernel. Under incomplete markets, no-

arbitrage implies that there exists at least one SDF Mt such that Mt > 0. There may

be more than one Mt as well. If there is only one positive SDF, then M̂t converges to

it. If there are more than one, then M̂t converges to a convex combination of those

positive SDFs. In any case, since all of them have identical pricing properties, the pricing

properties of M̂t will approach those of all of these positive valid SDFs.

Third, from a different angle, it is straightforward to verify that our estimator was

constructed to obey:

plim
(N,T→∞)seq .

1

N

N∑
i=1

1

T

T∑
t=1

M̂tRi,t = plim
(N,T→∞)seq .

1

N

N∑
i=1

1

T

T∑
t=1

R
G

t

1
T

∑T
j=1R

G

j R
A

j

Ri,t

= plim
(N,T→∞)seq .

1

T

T∑
t=1

R
G

t R
A

t

1
T

∑T
j=1 R

G

j R
A

j

= plim
T→∞

1

T

T∑
t=1

RG
t R

A
t

1
T

∑T
j=1R

G
j R

A
j

= 1, (24)

where RA
t and R

G
t are the probability limits of R

G

t and R
A

t , respectively, when we let

N →∞.

Note that the result in (24) is a natural property arising from the moment restrictions

entailed by the Asset-Pricing Equation (2), when populational means are replaced by

sample means. In finite samples, it does not price correctly any specific asset. However,

on average, it will price correctly all the assets in the economy. Moreover, in the limit,

the average pricing errors will be nil due to (24). The latter is a very attractive property.

We now check whether or not our proposed factor model (9) prices securities cor-

rectly. Our key assumption for the simplified pricing model is that ln (MtRi,t) |It−1 ∼

N (Et−1 (ri,t +mt) ;σ2
i ), where It−1 is the information set used by the agent based on

information up to period t − 1. From the properties of the log-Normal distribution, we
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obtain:

1 = Et−1 (MtRi,t) = exp

{
Et−1 (ri,t +mt) +

1

2
σ2
i

}
. (25)

From (9), recalling that βi = −1 + δi, we get:

ri,t +mt = −1

2
σ2
i + δi (mt − E (mt)) + ξi,t.

Therefore:

Et−1 (ri,t +mt) = −1

2
σ2
i + δiEt−1 (mt − E (mt)) + Et−1

(
ξi,t
)
. (26)

Recall now that εi,t is a Martingale Difference, i.e., that Et−1 (εi,t) = 0. Since we have

decomposed it as:

εi,t = δi (mt − E (mt)) + ξi,t,

we arrive at:

0 = Et−1 (εi,t) = δiEt−1 (mt − E (mt)) + Et−1

(
ξi,t
)
. (27)

Combining (26) and (27), we get:

Et−1 (ri,t +mt) = −1

2
σ2
i ,

but from (25),

1 = Et−1 (MtRi,t) = exp

{
−1

2
σ2
i +

1

2
σ2
i

}
= exp {0} . (28)

So, indeed, (9) is a proper asset-pricing model.

2.4 Comparisons with the Literature

Several early studies in the literature estimated the SDF indirectly as a function of con-

sumption data from the National Income and Product Accounts (NIPA), using a para-

metric function to represent preferences; see Hansen and Singleton (1982, 1983, 1984),
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Brown and Gibbons (1985) and Epstein and Zin (1991). As noted by Rosenberg and

Engle (2002), there are several sources of measurement error for NIPA consumption data

that can pose a significant problem for this type of estimate. Even if this were not the

case, there is always the risk that an incorrect choice of parametric function used to repre-

sent preferences will contaminate the final SDF estimate. By construction, our approach

avoid these problems since it is not based on a choice for preferences.

This paper is related to the work of Hansen and Jagannathan (1991, 1997), who point

out that early studies imposed potentially stringent limits on the class of admissible asset-

pricing models. They avoid dealing with a direct estimate of a valid SDF, but note that

an admissible SDF has its behavior (and, in particular, its variance) bounded by two

restrictions. The first is the Pricing Equation (2) and the second is the fact that Mt > 0.

They exploit the fact that it is always possible to project M onto the space of returns,

which makes it straightforward to expressM∗, the mimicking portfolio, only as a function

of observable returns and the price of a risk-free asset.

Start with:

E (RtMt) = ι, (29)

whereRt = (R1,t, R2,t, ... RN,t)
′ is anN×1 vector, with E (Rt) = µ, and E

[
(Rt − µ) (Rt − µ)′

]
=

ΣR, and ι is an N × 1 vector stacking ones. Although we do not observe Mt, Hansen and

Jagannathan propose a least-squares projection of Mt onto (Rt − µ) and a constant as

follows:

Mt = α + (Rt − µ)′ β + υt, (30)

where E (Mt) = α. Pre-multiplying (30) by (Rt − µ) and taking expectations allows

solving for β:

β = Σ−1
R (ι− µα) ,

which identifies β as long as we identify α.

If one observes the price of a risk-free asset, qt, then one can identify α as:

E (Mt) = E (qt) = α,
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and construct a minimum-variance estimator M∗
t , as:

M∗
t = α + (Rt − µ)′ β,

since it is the least-squares projection of Mt onto (Rt − µ) —a linear function of asset

returns alone —something that has inspired our approach.

Of course, for any sample of returns, we will estimate a differentM∗
t , but, in principle,

we can let N →∞ to obtain a single asymptotic estimator as we propose in this paper. If

the number of assets is large, since ΣR is anN×N matrix, its inversion will be problematic

for large samples —making it hard to estimate β in this context.

We now ask whether we could use the same principles used to construct our SDF

estimator to circumvent the problem of dealing with a large number of assets in the

approach of Hansen and Jagannathan. Recall that, in constructing our estimator Mt we

have first taken averages in the cross-sectional dimension. Here, this could be applied as

well to circumvent the large-sample inversion problem for ΣR. Hence, our solution is to

reduce the dimensionality of Rt by recognizing that the Asset-Pricing Equation implies a

single factor for for Rt for large N . Pre-multiply (29) by 1
N
ι′, to obtain:

E
(
R
A

t Mt

)
= 1,

which prices the equally-weighted portfolio of all assets — a scalar. Project Mt onto(
R
A

t − E
(
R
A

t

))
and a constant as follows:

Mt = α +
(
R
A

t − E
(
R
A

t

))
βA + υAt .

As before, we can identify α as E (qt) = α, and βA as:

βA =
1− E

(
R
A

t

)
α

VAR
(
R
A

t

) .

By using the returns of the equally-weighted portfolio, R
A

t , we avoid the invertibility
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problem alluded above, since, as N → ∞, RA

t will still have time-series variation and

VAR
(
R
A

t

)
will be well defined. Hence, βA is identified and we can construct an asymptotic

version of M∗
t , as follows:

M∗∗
t = α +

(
R
A

t − E
(
R
A

t

))
βA. (31)

This illustrates the potential gains in constructing an asymptotic estimator for Mt by

using the cross-sectional average of returns, something that can only be achieved in a

panel-data framework.

One may ask what is lost when we cross-sectionally aggregate returns. To answer this

question, consider the well-known factor model proposed by Stock and Watson (2002)

applied to Rt in a context of large N, T :

Rt = µ+ ΛFt + et, (32)

where the N assets of the economy are governed by r � N common factors, E (Rt) = µ,

the factor loading matrix Λ = (λij) is of dimension N × r, the vector of zero-mean

factors Ft is of dimension r×1, and the error term et is cross-sectionally independent and

temporally i.i.d. Pre-multiply (32) by 1
N
ι′ to obtain:

R
A

t − E
(
R
A

t

)
=

r∑
j=1

(
1

N

N∑
i=1

λij

)
Fjt +

1

N

N∑
i=1

eit,

We can now examine what happens when we let N → ∞. Given the properties of

et in the cross-sectional dimension, 1
N

∑N
i=1 eit

p→ 0. Stock and Watson also assume that
1
N

Λ′Λ→ Ir, so the limit of 1
N

∑N
i=1 λij, call it λj, is well defined as N →∞. Therefore,

plim
N→∞

(
R
A

t − E
(
R
A

t

))
= RA

t − E
(
RA
t

)
=

r∑
j=1

λjFjt

contains a single factor which is a linear combination of the r original factors in (32).

However, we have eliminated the idiosyncratic components of returns by cross-sectionally
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aggregating them for large N . In the end, our regressor for large N will be a linear

function of the factors in the beta model for returns Rt, but this is exactly the proper

characterization of SDFs in a factor-model setup.

Under some conditions, our estimator of Mt is related to the return to aggregate

capital. For algebraic convenience, we use the log-utility assumption for preferences —

where Mt+j = β ct
ct+j

—as well as the assumption of no production in the economy. Since

asset prices are the expected present discounted value of the dividend flow and, under no

production, dividends are equal to consumption in every period, the price of the portfolio

representing aggregate capital p̄t is:

p̄t = Et

{ ∞∑
i=1

βi
ct
ct+i

ct+i

}
=

β

1− β ct.

Hence, the return to aggregate capital Rt+1 is given by:

Rt+1 =
p̄t+1 + ct+1

p̄t
=
βct+1 + (1− β)ct+1

βct
=
ct+1

βct
=

1

Mt+1

, (33)

which is the reciprocal of a valid SDF.

Indeed, Gomes and Issler (2017) exploit this property discussing the optimality of

aggregate consumption, showing no signs of asset-pricing puzzles when pricing Rt. This

reinforces the role that the an aggregate portfolio can have in asset pricing, something

that ought to deserve more attention of the finance literature.

3 Empirical Applications in Macroeconomics and Fi-

nance

3.1 From Asset Prices to Preferences

An important question that can be addressed with our estimator of Mt is how to test

and validate specific preference representations. Here we focus on three different prefer-

ence specifications for SDFs: the CRRA specification (Power Utility), which has a long
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tradition in the finance and macroeconomic literatures, the external-habit specification

of Abel (1990), and the Kreps and Porteus (1978) specification used in Epstein and Zin

(1991), which are respectively,

MCRRA
t = β

(
ct
ct−1

)−γ
(34)

MEH
t = β

(
ct
ct−1

)−γ (
ct−1

ct−2

)κ(γ−1)

(35)

MKP
t =

[
β

(
ct
ct−1

)−γ] 1−γ
ρ (

1

Bt

)1− 1−γ
ρ

, (36)

where ct denotes consumption, Bt is the return on the optimal portfolio, β is the discount

factor4, γ is the relative risk-aversion coeffi cient, and κ is the time-separation parameter

in the habit-formation specification.

As is well-known, MEH
t is a geometric weighted average of MCRRA

t and
(
ct−1

ct−2

)
. If

κ = 0, we are back to the CRRA specification. In the Kreps-Porteus specification the

elasticity of intertemporal substitution in consumption is given by 1/(1−ρ) and α = 1−γ

determines the agent’s behavior towards risk. If we denote θ = 1−γ
ρ
, it is clear thatMKP

t is

a geometric weighted average ofMCRRA
t and

(
1
Bt

)
, with weights θ and 1−θ, respectively.

If θ = 1, we are also back to the CRRA specification.

For consistent estimates, we can always write:

mt = m̂t − ηt, (37)

where ηt is the approximation error between mt and its consistent estimate m̂t.

The properties of ηt will depend on the properties ofMt and Ri,t. In general, it will be

serially dependent and heterogeneous. Using (37) and the expressions in (34), (35) and

4Not to be confused with the beta coeffi cients of our factor model (9), βi,
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(36), we arrive at:

m̂t = ln β − γ∆ ln ct + ηCRRAt , (38)

m̂t = ln β − γ∆ ln ct + κ (γ − 1) ∆ ln ct−1 + ηEHt , (39)

m̂t = θ ln β − θγ∆ ln ct − (1− θ) lnBt + ηKPt , (40)

The most appealing way of estimating (38), (39) and (40), simultaneously testing for

over-identifying restrictions, is to use the generalized method of moments (GMM). Lagged

values of returns, consumption and income growth, and also of the logged consumption-

to-income ratio can be used as instruments in this case. Since (38) is nested into (39), we

can also perform a redundancy test for ∆ ln ct−1 in (38). The same applies regarding (38)

and (40), since the latter collapses to the former when lnBt is redundant.

In our first empirical exercise, we apply our techniques to returns available to the

average U.S. investor, who has increasingly become more interested in global assets over

time. Real returns were computed using the consumer price index in the U.S. Our data

base covers U.S.$ real returns on G7-country stock indices and short-term government

bonds, where exchange-rate data were used to transform returns denominated in foreign

currencies into U.S.$. In addition to G7 returns on stocks and bonds, we also use U.S.$

real returns on gold, U.S. real estate, bonds on AAA U.S. corporations, and on the SP

500. The U.S. government bond is chosen to be the 90-day T-Bill, considered by many to

be a “riskless asset.”The data were extracted from different sources: NIPA data for the

U.S. (Personal Consumption Expenditures of Nondurable and Services and GNP), with

seasonal adjustment, were extracted from the FRED database, kept by St. Louis FED.

We also extracted from FRED the Moody’s Aaa Corporate Bond Yield. All G7 return

data for stocks, as well as exchange rates for all G7 countries, were extracted from the

OECD database. The U.S. Treasury Bill Rate, as well as the Treasury-bill rates for G7

countries, were extracted from the International Financial Statistics (IFS) data base of

the IMF. From Bloomberg, we extracted the price of Gold, the NYSE Index, and the

SP500 Index. finally, the FTSE Nareit U.S. Real Estate Index was extracted from the
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homepage of the National Association of Real Estate Investment Trusts (Nareit).

Our sample period starts in 1977:Q2 and ends in 2019:Q2, at the quarterly frequency,

comprising T = 169 time periods. Overall, we averaged the real U.S.$ returns on these

18 portfolios or assets5, which are, in turn, each one a function of thousands of assets.

These are predominantly U.S. based, but we also cover a wide spectrum of investment

opportunities across the globe. This is an important element of our choice of assets, since

diversification allows reducing the degree of correlation of returns across assets.

In estimating equations (38) and (39) by GMM, we must use additional series. Real

per-capita consumption growth was computed using private consumption of non-durable

goods and services in constant U.S.$. Since there is no constructed deflator for non-

durables and services, we constructed a measure of Fisher’s Ideal Price Index to deflate

nominal consumption. This deflator was used throughout to deflate returns as well. We

also used real per-capita GNP (yt) as a measure of income —an instrument in running

some of these regressions.

Figure 1 below shows our estimator of the SDF — M̂t — for the period 1977:Q2 to

2019:Q2. It is close to unity most of the time and bounded by the interval [0.85, 1.25].

The sample mean of M̂t is 0.99 on a quarterly basis, implying an annual discount factor

of 0.96, a very reasonable estimate, especially considering that our sample includes the

great recession.

5The complete list of the 18 portfolio- or asset-returns, all measured in U.S.$ real terms, is: returns
on the NYSE, Canadian Stock market, French Stock market, West Germany Stock market, Italian Stock
market, Japanese Stock market, U.K. Stock market, 90-day T-Bill, Short-Term Canadian Government
Bond, Short-Term French Government Bond, Short-Term West Germany Government Bond, Short-Term
Italian Government Bond, Short-Term Japanese Government Bond, Short-Term U.K. Government Bond.
As well as on the return of all publicly traded REITs —Real-Estate Investment Trusts in the U.S., on
Bonds of AAA U.S. Corporations, Gold, and on the SP 500.
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Figure 1: Estimate of the Stochastic Discount Factor for G7 Countries.

Tables 1, 2, and 3 present GMM estimation of equations (38), (39) and (40), re-

spectively. We used as a basic instrument list two lags of all real returns employed in

computing M̂t, two lags of ln
(

ct
ct−1

)
, two lags of ln

(
yt
yt−1

)
, and one lag of ln

(
ct
yt

)
. This

basic list was altered in order to verify the robustness of empirical results. We also include

OLS estimates to serve as benchmarks in all three tables.

Table 1 reports results obtained using a Power-Utility specification for preferences.

The first thing to notice is that there is no evidence of rejection in over-identifying re-

strictions tests in any GMM regression we have run. Moreover, all of them showed sensible

estimates for the discount factor and the risk-aversion coeffi cient: β̂ is very close to 0.997

for all obtained estimates and estimates for γ are all in the interval [1.15, 1.40] —all very

significant at usual levels. Our preferred regression is the last one in Table 1, where all

instruments are used in estimation. There, β̂ = 0.997 and γ̂ = 1.360, both significant at

usual levels.

Table 2 reports results obtained when (external) habit formation is considered in pref-
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Power-Utility Function Estimates
mt = ln β − γ∆ ln ct − ηCRRAt

Instrument Set β γ OIR Test
(SE) (SE) (P-Value)

OLS Estimate 1.000388 1.811034 -
(0,004184) (0.486580)

ri,t−1, ri,t−2, ∀i = 1, 2, ...N, 0.997380 1.403094 (0.993129)
(0.002501) (0.256690)

ri,t−1, ri,t−2, ∀i = 1, 2, ...N, 0.995964 1.153144 (0.996510)
∆ ln ct−1,∆ ln ct−2 (0.002154) (0.198670)
ri,t−1, ri,t−2, ∀i = 1, 2, ...N, 0.996595 1.241693 (0.995987)
∆ ln yt−1,∆ ln yt−2 (0.002418) (0.242484)
ri,t−1, ri,t−2, ∀i = 1, 2, ...N, ∆ ln ct−1, 0.997099 1.360465 (0.998300)
∆ ln ct−2,∆ ln yt−1,∆ ln yt−2 (0.002206) (0.204433)

Table 1: Power Utility Function —GMM Estimates

erences. Results are very different to those obtained with power utility. First, estimates of

γ jump from the interval [1.15, 1.40] to the interval [3.59, 4.25], all statistically significant.

Second, the estimates of κ are all in the interval [0.889, 1.000] and all statistically signifi-

cant as well. In this case, the external-habit specification should be preferred vis-a-vis the

Power Utility specification. As before, we find no evidence of rejection in over-identifying

restrictions tests in any regression we have run.

Results using the Kreps-Porteus specification are reported in Table 3. To implement

its estimation, a first step is to find a proxy to the optimal portfolio. We followed Epstein

and Zin (1991) in choosing the NYSE index for that role. Estimates for the discount factor

β are all higher than unity, and statistically different than unity on almost all counts. The

optimal portfolio term coeffi cient, θ, has an estimate in the interval [0.514, 0.582], but it

is neither statistically equal to zero nor statistically equal to unity at usual significance

levels. Despite the odd result regarding β estimates, the Kreps-Porteus specification

should be preferred vis-a-vis the Power Utility specification. Again, there is no evidence

of rejection in over-identifying restrictions tests in any GMM regression we have run.
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External-Habit Utility-Function Estimates
mt = ln β − γ∆ ln ct + κ(γ − 1)∆ ln ct−1 − ηEHt

Instrument Set β γ κ OIR Test
(SE) (SE) (SE) (P-Value)

OLS Estimate 0.997260 3.307682 0.858723 -
(0.004241) (0.710761) (0.210985)

ri,t−1, ri,t−2, ∀i = 1, 2, ...N, 0.996853 3.737319 0.888717 (0.990324)
(0.002517) (0.685271) (0.089653)

ri,t−1, ri,t−2, ∀i = 1, 2, ...N, 0.994999 3.588043 0.999759 (0.992727)
∆ ln ct−1,∆ ln ct−2 (0.002367) (0.677137) (0.092894)
ri,t−1, ri,t−2, ∀i = 1, 2, ...N, 0.996288 3.707508 0.932906 (0.994561)
∆ ln yt−1,∆ ln yt−2 (0.002446) (0.661173) (0.088334)
ri,t−1, ri,t−2, ∀i = 1, 2, ...N, ∆ ln ct−1, 0.997110 4.246917 0.895911 (0.996886)
∆ ln ct−2,∆ ln yt−1,∆ ln yt−2 (0.002346) (0.659643) (0.068874)

Table 2: External Habit Utility Function —GMM Estimates

Since the External-Habit and the Kreps-Porteus specifications encompass the power

utility specification, and we have rejected H0 : κ = 0 for the former, and have rejected

H0 : θ = 1 for the latter, we conclude that these two are our preferred specifications. It

should be noted that Campbell and Cochrane (1999) propose the external habit model to

solve well-known puzzles in finance, whereas the Epstein and Zin’s specification separating

risk aversion and intertemporal substitution is currently a preferred specification in the

finance literature. In that sense, our empirical results so far are aligned with the dominant

view in the macro-finance literature.

3.2 Simulation Study

Pukthuanthong and Roll (2015) propose an interesting simulation study, based on what

they call an agnostic view of stochastic discount factors (SDFs), consistent with our

approach, since it is based on the Asset-Pricing Equation. First, they generate a gross

riskless rate, Rf
t , and a SDF at time t = 1, 2, · · · , T , as:

Mt =
1

Rf
t

exp

(
µt −

σ2
µ

2

)
,
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Kreps-Porteus Utility-Function Estimates
mt = θ ln β − θγ∆ ln ct − (1− θ) lnBt − ηKPt

Instrument Set β γ θ OIR Test
(SE) (SE) (SE) (P-Value)

OLS Estimate 1.003671 2.212549 0.643915
(0.004609) (0.532732) (0.027097)

ri,t−1, ri,t−2, ∀i = 1, 2, ...N, 1.008285 2.743907 0.514460 (0.983547)
(0.002686) (0.363743) (0.030306)

ri,t−1, ri,t−2, ∀i = 1, 2, ...N, 1.004015 2.195702 0.581821 (0.994278)
∆ ln ct−1,∆ ln ct−2 (0.002152) (0.278868) (0.022761)
ri,t−1, ri,t−2, ∀i = 1, 2, ...N, 1.004394 2.210713 0.578335 (0.994313)
∆ ln yt−1,∆ ln yt−2 (0.002213) (0.265318) (0.025315)
ri,t−1, ri,t−2, ∀i = 1, 2, ...N, ∆ ln ct−1, 1.005907 2.521649 0.565332 (0.997809)
∆ ln ct−2,∆ ln yt−1,∆ ln yt−2 (0.002263) (0.286836) (0.020057)

Table 3: Kreps-Porteus Utility Function —GMM Estimates

where µt ∼ i.i.d.N
(
0, σ2

µ

)
. Second, they generate gross un-scaled returns using:

R̃i,t = φ exp

(
ζ i,t −

σ2
ζ

2

)
,

where φ is the expected gross return for asset i, assumed the same across assets, and

ζ i,t ∼ i.i.d.N
(
0, σ2

ζ

)
, where σ2

ζ does not vary across i as well. Final scaled returns are

computed as:

Ri,t =
R̃i,t

1
T

∑T
t=1MtR̃i,t

exp

(
υi,t −

σ2
υ

2

)
,

where υi,t ∼ i.i.d.N (0, σ2
υ), which implies that the Asset-Pricing Equation holds uncon-

ditionally in the time dimension for every asset i, i.e.,

E

[
1

T

T∑
t=1

MtRi,t

]
= 1.

Here, we implement a broader simulation study, which includes the joint dynamics of

gross returns and of the SDF. In searching for a dynamic model which would be tractable,

we decided to employ the (consumption) capital-asset-pricing model (CCAPM) setup

of Hansen and Singleton (1983), where they assume that ln (MtRt) has a conditional

multivariate Normal distribution with homoskedastic variance in the time dimension,
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i.e., ln (MtRi,t)| It−1 ∼ N (Et−1 (ri,t +mt) ;σ2
i ), where we can further decompose σ

2
i =

σ2
m + σ2

ri
+ 2COV(mt, ri,t), where σ2

m is the variance of mt and σ2
ri
is the variance of ri,t.

They also assume the Power-Utility specification for the utility function, u (ct), which

yields:

Mt = β

(
ct
ct−1

)−γ
,

where γ is the relative risk-aversion coeffi cient and β is the discount factor. As discussed

above, these assumptions give us a log-linear system on ri,t and ∆ ln (ct), i = 1, . . . , N , as

follows:

ri,t − γ∆ ln (ct) = − ln (β)− σ2
i

2
+ εi,t, i = 1, . . . , N. (41)

Hansen and Singleton show that the dynamic representation of the data follows a

vector autoregression V AR (p) process with contemporaneous relationships and the same

reduced-rank constraints exploited by Engle and Kozicki (1993), Vahid and Engle (1993),

and Engle and Issler (1995), in the common-feature literature. Indeed, if we denote by

Xt = (r1,t, r2,t, · · · , rN,t,∆ ln (ct))
′ an (N + 1)×1 vector containing all logged gross returns

and the instantaneous growth rate of consumption, it is straightforward to show that Xt

obeys a structural V AR (p) model with Gaussian errors, as follows:

A0Xt = c0 +

 0

a1

Xt−1 +

 0

a2

Xt−2 + · · ·+

 0

ap

Xt−p + vt,
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where vt ∼ N (0,Σv), and:

A0 =



1 ... ... 0 −γ

0 1 ... 0 −γ
...
...
. . .

...
...

0 0 ... 1 −γ

0 ... ... 0 1


(N+1)×(N+1)

, c0=



− ln (β)− σ2
1

2

− ln (β)− σ2
2

2
...

− ln (β)− σ2
N

2

µ∆c −
σ2

∆c

2


,

vt =



ε1,t

ε2,t

...

εN,t

ε∆c,t


, and

 0

aj

 =



0 0 0 0 0

0 0 0 0 0
...

...
...

...
...

0 0 0 0 0

aj1 aj2 · · · ajN ajN+1


(N+1)×(N+1)

j = 1, . . . , p,

where µ∆c is the constant in the last equation of the V AR, i.e., the equation for ∆ ln (ct),

and σ2
∆c its conditional variance.

Here, ∆ ln (ct) represents the common feature (factor), which obeys its own dynamics,

transmitted to the rest of the system, (r1,t, r2,t, · · · , rN,t)′, by the reduced-rank structure in 0

aj

, j = 1, . . . , p, and the contemporaneous relationships ri,t − γ∆ ln (ct), embedded

in A0. Given the properties of logged gross returns and the instantaneous growth rate

of consumption, since A0 is a non-singular matrix, a standard reduced-form stationary

V AR (p) model for Xt is given by:

Xt = A−1
0 c0 + A−1

0

 0

a1

Xt−1 + A−1
0

 0

a2

Xt−2 + · · ·

+A−1
0

 0

ap

Xt−p + A−1
0 vt, or, (42)

Xt = c + B1Xt−1 + B2Xt−2 + · · ·+ BpXt−p + ηt. (43)
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where c = A−1
0 c0, Bi = A−1

0

 0

ai

, i = 1, . . . , p, and ηt = A−1
0 vt. It is important

to note that Σv allows for heterogeneity in the variances of the terms in vt, which is

explicitly taken into account in the definition of c0. Moreover, even if Σv is a diag-

onal matrix, the reduced form variance-covariance matrix will not be diagonal, since

E [ηtη
′
t] =

(
A−1

0

)
Σv

(
A−1

0

)′
. This can imply considerable cross-correlation for asset re-

turns, stemming from the presence of the common component γ∆ ln (ct) in the returns of

different assets.

Given an initial condition X0 for Xt in (43), set as E [Xt], and a suffi cient burning

period for the dynamic system to operate, it is straightforward to simulate data for Xt

that will satisfy the Asset-Pricing Equation (2) by construction. As a consequence, it will

also obey the log-linear one-factor model derived above, i.e., equation (9).

To simplify matters in our simulation, we employed a V AR (p) of order one, i.e.,

p = 1, using parameters consistent with those obtained in GMM estimation in Table 1

— that uses data at the quarterly frequency. The estimate for β was converted to the

monthly frequency as β = 0.999, whereas γ = 1.30 was kept the same. We have set

E [∆ ln (ct)] = 0.0021 at the monthly frequency, which yields an annual growth rate of

2.55%. We chose VAR(∆ ln (ct)) = 1.78E − 5.

After a burning period of 30 months, we simulate the system with N = 1, 000 assets,

and T = 100 monthly observations. In our preferred setting, the autoregressive coeffi cient

for consumption growth is set to 0.3, i.e., a1
N+1 = 0.3, whereas the other coeffi cients in

the last line of

 0

a1

 are all relatively small, selected to be close to 1−7. Our preferred

average (annual) volatility of the 1, 000 assets was set to 20%. We simulated the system

100 times.

In order to perform a robustness check to our results, we have also varied a1
N+1 to

be a1
N+1 = 0.1 and a1

N+1 = 0.5 in different sets of simulations. Although our preferred

average (annual) volatility of the 1, 000 assets was set to 20%, we have also changed that

for different simulations sets to be 15%, and 30%, where the latter allows for a lot of

heterogeneity in (log) returns.
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Figure 2 presents the average across simulations of the actual SDF in the CCAPM,

Mt = β
(

ct
ct−1

)−γ
, and our proposed estimate in this paper, M̂t = R

G
t

1
T

∑T
j=1 R

G
j R

A
j

, for which

we have used samples of N = 1, 000 and T = 100 for each simulation. Average simulated

and estimated values are extremely close, especially taking into account the tight SDF

scale in the vertical axis for all the plots presented next in Figures 2, 3 and 4. The first

shows our benchmark case, with a1
N+1 = 0.3.

Figure 2: Average Simulated Stochastic Discount Factor of CCAPM (Blue) and

Average Estimate in This Paper (Green). Number of Simulations = 100.

Figures 3 and 4 below also show simulation results for alternative settings, where the

only change was on the autoregressive coeffi cient for consumption growth, from 0.3 to

either 0.1 or 0.5. In them, we see very little difference between the average actual SDF,

Mt = β
(

ct
ct−1

)−γ
, and the average across simulations of M̂t = R

G
t

1
T

∑T
j=1 R

G
j R

A
j

. The only

striking difference across these figures is the degree of persistence observed in both actual

and estimated SDF.
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Figure 3: Average Simulated Stochastic Discount Factor of CCAPM (Blue) and

Average Estimate in This Paper (Green). Number of Simulations = 100.

Figure 4: Average Simulated Stochastic Discount Factor of CCAPM (Blue) and

Average Estimate in This Paper (Green). Number of Simulations = 100.

3.3 Factor Model Evaluation: A Panel-Data Analysis

In constructing our estimator of the SDF, we try to approximate the asymptotic environ-

ment with monthly U.S. time-series return data from 1980:1 through 2020:12 (T = 492
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observations), collected for N = 102, 698 assets, grouped in the following four categories:

mutual funds (68, 085), stocks (29, 627), real-estate REITs (1, 000), and government bonds

(3, 986).

All return data used in this exercise came from either from CRSP or Bloomberg.

Mutual-Fund return data comes from the CRSP Mutual Fund Database, which reports

open-ended mutual-fund returns using survivor-bias-free data. Bias can arise, for example,

when a older fund splits into other share classes, each new share class being permitted

to inherit the entire return/performance history of the older fund. Stock return data

comes from the CRSP U.S. Stock and CRSP U.S. Indices, which collect returns from

NYSE, AMEX, NASDAQ, and, more recently, NYSE Arca. Real-Estate return data

comes from the CRSP/Ziman Real Estate Data Series. It collects return data on real-

estate investment trusts (REITs) that have traded on the NYSE, AMEX and NASDAQ

exchanges. Finally, government-bond return data comes from CRSP Monthly Treasury

U.S. Database, which collects monthly returns of U.S. Treasury bonds with different

maturities, and also from Bloomberg.

The first step to perform our exercise is to compute M̂t. It becomes clear immediately

that we do not have a random sample of returns in the cross sectional dimension, since

from the total number of N = 102, 698 assets, 66% came from the Mutual-Fund category,

29% came from the Stocks category, 4% came from the Treasury-Bond category and only

1% came from the Real-Estate REITs category. However, based on the “Wealth and

Asset Ownership”tables of 2004, provided by the U.S. Census Bureau, the approximate

weights that each of these four categories should receive are as follows: Mutual Funds

(10%), Stocks (10%), Government Bonds (20%), and Real Estate (60%)6. Therefore,

we treated our sample as a stratified sample, weighting their respective returns using

these approximate weights for each of the four asset categories (mutual funds, stocks, real

estate, and government bonds). Hence, for each category, we first computed a version

of M̂t = R
G
t

1
T

∑T
j=1R

G
j R

A
j

for each category, later aggregating results using category weights.

6These tables can be downloaded from http://www.census.gov/hhes/www/wealth/2004_tables.html.
These weights we propose using come from Table 1, which has the “Median Value of Assets for Households,
by Type of Asset Owned and Selected Characteristics.”
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As a robustness check, we changed these weights (from 5 up to 20 percentage points for

individual categories), computing again M̂t. However, this produced virtually no change

on reported results.

Using the baseline weights, our estimate of Mt has a mean of 0.9958 on a monthly

basis, or 0.9504 on a yearly basis. The plot of M̂t follows below in Figure 5.

0.8

0.9

1

1.1

1.2

1.3

1980 1985 1990 1995 2000 2005 2010 2015 2020

Figure 5: Stochastic Discount Factor Panel-Data Estimate

The affi ne beta-model for the log of asset returns, ri,t, with the single factor mt, and

idiosyncratic error term ξi,t, is as follows:

ri,t = −
(

1

2
σ2
i − δiE (mt)

)
+ βimt + ξi,t, i = 1, 2, · · · , N , t = 1, 2, · · · , T. (44)

Since the total number of time observations is T = 492, and the total number of assets

is N = 102, 698, we have too many parameters to estimate if we want to account for cross-

sectional heterogeneity in the intercept and the slope of the affi ne model. Searching for a

tractable model to estimate, we considered the mixed-effect panel-data model (also known

as the mixed linear model) that takes into account individual heterogeneity in regression

coeffi cients; see Cameron and Trivedi (2010) for a basic introduction in a panel-data
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context:

ri,t = −
(

1

2
σ2
i + δiE (mt)

)
+ βimt + ξi,t, where (45)

1

2
σ2
i + δiE (mt) =

1

2
σ2

0 + δ0E (mt) + µi, µi ∼ N
(
0, σ2

µ

)
,

βi = β0 + νi, νi ∼ N
(
0, σ2

ν

)
.

Following themixed-effect panel-data literature, we estimated (45) by maximum likelihood

assuming a (zero-mean) Gaussian random-effect specification for µi and νi. Results are

presented in Table 4, below.

rit = −
(

1
2
σ2
i + δiE (mt)

)
+ βimt + ξi,t

1
2
σ2
i + δiE (mt) = 1

2
σ2

0 + δ0E (mt) + µi, µi ∼ N
(
0, σ2

µ

)
βi = β0 + νi, νi ∼ N (0, σ2

ν)

Weights on β0
1
2
σ2

0 + δ0E (mt) σ2
µ σ2

ν H0 : β0 = −1

(T,S,RE,MF) (SE) (SE) (SE) (SE) (P-Value)
(0.20, 0.15, 0.60, 0.05) -1.010296 0.0028611 0.0020201 0.8895272 0.33218

(0.0178636) (0.0000582) (0.0001047) (0.020098) (0.56438)

Note: Robust standard errors in parentheses.

Table 4: Mixed-effect Model Estimation

In Table 4, β0 —the mean of βi —is −1.01 and it is statistically equal to −1 in testing.

This suggests that δ0E (mt) ' 0, and therefore that 1
2
σ2

0 + δ0E (mt) ' 1
2
σ2

0. Recall that we

have used β = β0 = −1 as our main identification assumption. Indeed, if our panel had

a balanced sample, we should have obtained exactly −1.7 The mean of 1
2
σ2
i + δiE (mt) is

also estimated with high precision and the same is true for the estimates of σ2
µ and of σ

2
ν .

We perform a sensitivity analysis of the results in Table 4 by varying the weights given

to different classes of assets in calculating the SDF consistent estimate. These changes

in weights range from 5 up to 20 percentage points for individual categories. Results

are presented in Table 5. There is very little change in results —either quantitatively or

qualitatively, which is reassuring.
7This is true if we observe mt, which is not the case, since it is a latent variable. Indeed, we have

a consistent estimator of it using a large sample. So, we are facing a well-known generated-regressor
problem, which is mitigated since the sample we employ in estimation is large. Indeed, in this case, we
can think of the test of β0 = −1 as a specification test.
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Next, we investigate whether or not the one-factor SDF affi ne model fits well the panel-

data distribution of asset returns. For all the assets in the four categories, Mutual Funds,

Stocks, Government Bonds, and Real Estate, we recover their individual intercepts and

slopes and then forecast in sample the set of observed returns for all time periods. Indeed,

we have used the best-linear-unbiased predictor (BLUP) for ri,t under the assumptions of

the mixed-effect model (45).

Results are presented in Figure 6, below. Despite the fact that our sample includes

the 1987 Black Monday episode, the burst of the Dotcom Bubble, the Great Recession,

and the Covid-19 pandemic, the results show a good in-sample fit for our panel of returns,

where fitted and actual values are aligned close to the 45 degree line, with the exception

of a few outliers associated with those episodes.

Figure 6: Predicted versus Actual Returns for all Asset Categories

and Time Periods
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rit = −
(

1
2
σ2
i + δiE (mt)

)
+ βimt + ξi,t

1
2
σ2
i + δiE (mt) = 1

2
σ2

0 + δ0E (mt) + µi, µi ∼ N
(
0, σ2

µ

)
βi = β0 + νi, νi ∼ N (0, σ2

ν)

Weights on β0
1
2
σ2

0 + δ0E (mt) H0 : β0 = −1

Treasuries Stocks REITS Mutual Funds (SE) (SE) (P-Value)
0.1 0.15 0.6 0.15 -1.09208 0.005573 0.14791

(0.23942) (0.00147) (0.70054)
0.1 0.15 0.7 0.05 -1.16708 0.006201 0.65127

(0.21726) (0.000903) (0.41966)
0.1 0.2 0.6 0.1 -1.12406 0.006099 0.32606

(0.21726) (0.001317) (0.56799)
0.15 0.1 0.6 0.15 -1.02994 0.005175 0.01007

(0.29832) (0.00147) (0.92005)
0.15 0.1 0.7 0.05 -1.10497 0.005811 0.13949

(0.28106) (0.000959) (0.70879)
0.15 0.2 0.5 0.15 -1.01882 0.00558 0.0046

(0.27748) (0.001678) (0.94594)
0.15 0.2 0.6 0.05 -1.09386 0.006214 0.12409

(0.26644) (0.00122) (0.72464)
0.2 0.1 0.6 0.1 -0.99979 0.005301 0.00000

(0.34218) (0.001318) (0.9995)
0.2 0.15 0.5 0.15 -0.95667 0.005176 0.01736

(0.34218) (0.001612) (0.89518)
0.2 0.15 0.6 0.05 -1.03172 0.005815 0.00922

(0.33046) (0.001219) (0.92352)
0.2 0.2 0.5 0.1 -0.98866 0.005706 0.00125

(0.32025) (0.001546) (0.97176)
0.25 0.1 0.5 0.15 -0.89456 0.004777 0.07849

(0.37637) (0.001579) (0.77935)
0.25 0.1 0.6 0.05 -0.96962 0.005421 0.0061

(0.38898) (0.001267) (0.93775)
0.25 0.15 0.5 0.1 -0.92653 0.005302 0.03932

(0.37051) (0.001503) (0.84281)
0.25 0.2 0.5 0.05 -0.9585 0.005826 0.01287

(0.36587) (0.001519) (0.90969)

Note: Robust standard errors in parentheses. Variance estimates omitted for the sake of
space.

Table 5: Mixed-effect Model Estimation —Sensitivity Analysis

40



4 Conclusion

In this paper, we propose a no-arbitrage approach to asset pricing with the following

ingredients. First, based on no-arbitrage, we derive a one-factor model for the logarithm

of asset returns, where the single factor is the logarithm of a valid stochastic discount

factor. We interpret the factor as containing all the pervasive elements of (log) asset

returns, allowing a pervasive-idiosyncratic decomposition of these returns. Second, based

on this one-factor model, we derive a consistent estimator of a valid SDF in a panel-data

framework, when the number of assets and of time periods increase without bounds. The

asymptotic character of this SDF estimator is opposed to standard small-sample alterna-

tives where it is hard to interpret empirical results since these often change when different

groups of assets are used in estimation. From a theoretical perspective, asymptotic esti-

mates are immune to this problem. This increases its potential application in empirical

studies, especially in the big data era.

Our consistent estimator of a valid stochastic discount factor (SDF) exploits the cross-

sectional variation of returns to propose an asymptotically biased estimate of a valid

SDF. Our key identifications assumption is used to eliminate the bias and guarantees

that the proposed estimator is within the no-arbitrage class. Our SDF estimator depends

exclusively on appropriate averages of asset returns (geometric and arithmetic), which

makes its computation a simple and direct exercise. Because it does not depend on any

assumptions on preferences, or on consumption data, we are able to use our SDF estimator

to test directly different preference specifications which are commonly used in finance and

in macroeconomics.

The techniques discussed in this paper were applied to three issues in macroeconomics

and finance. In the first application, we used quarterly data of U.S.$ real returns from

1977:Q2 to 2019:Q2, comprising T = 169 time periods and thousands of assets world-

wide, to examine whether popular preference specifications used in macroeconomics and

finance fit the data. Our SDF estimator —M̂t —is close to unity most of the time and

bounded by the interval [0.85, 1.25], with an equivalent average quarterly discount factor

of 0.99. When we examined the appropriateness of different functional forms to represent
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preferences (Power Utility, External Habit and Kreps-Porteus), we concluded that none

of these standard preference representations are rejected by the data. However, after test-

ing for exclusion restrictions, we conclude that the External-Habit and the Kreps-Porteus

specifications are our preferred specifications, which concurs with the current dominant

view in the macro-finance literature.

In our second application, a mid-size simulation exercise is implemented with a no-

arbitrage dynamic (consumption) capital asset-pricing model using 100 time-series obser-

vations and and 1, 000 cross-sectional observations. It entails heterogeneity in the first

and second moments of asset returns. Results show that, on average, our consistent SDF

estimator is very close to the actual SDF, despite the fact that we employ a small sample

relative to the asymptotic framework.

In our third application, we try to approximate the asymptotic environment with

monthly U.S. time-series return data from 1980:1 through 2020:12 (T = 492 observations),

collected for N = 102, 698 assets. Our estimate ofMt has an average of 0.99 on a monthly

basis. We employed the mixed-effect panel-data model to assess the fit of our one-factor

model to the data. Despite the fact that our sample includes the 1987 Black Monday

episode, the burst of the Dotcom Bubble, the Great Recession, and the recent Covid-19

pandemic, the empirical results show a good in-sample fit for our panel of returns, where

fitted and actual values are aligned close to the 45 degree line.
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A Appendix: A General Consistency Proof for our
SDF Estimator

To construct a consistent estimator for Mt under general assumptions, we consider a
second-order Taylor Expansion of the exponential function around x, with increment h,
as follows:

ex+h = ex + hex +
h2ex+λ(h)·h

2
, (46)

where λ(h) : R→ (0, 1) . (47)

It is important to stress that (46) is an exact relationship and not an approximation.
This is due to the nature of the function λ(h) : R → (0, 1), which maps into the open
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unit interval. Thus, the last term is evaluated between x and x+ h, making (46) to hold
exactly.
For the expansion of a generic function, λ(·) would depend on x and h. However, the

exponential function has a special property: dividing (46) by ex yields:

eh = 1 + h+
h2eλ(h)·h

2
, (48)

showing that (48) does not depend on x. Therefore, we get a closed-form solution for λ(·)
as function of h alone:

λ(h) =

 1
h
× ln

[
2×(eh−1−h)

h2

]
, h 6= 0

1/3, h = 0,

where λ(·) maps from the real line into (0, 1). To connect (48) with the Pricing Equation
(2), we let h = ln(MtRi,t) in (48) to obtain:

MtRi,t = 1 + ln(MtRi,t) +
[ln(MtRi,t)]

2 eλ(ln(MtRi,t))·ln(MtRi,t)

2
, (49)

which shows that the behavior of MtRi,t will be governed solely by that of ln(MtRi,t).
It is useful to define the random variable collecting the higher order term of (49):

zi,t ≡
1

2
× [ln(MtRi,t)]

2 eλ(ln(MtRi,t))·ln(MtRi,t).

Taking the conditional expectation of both sides of (49) gives:

Et−1 (MtRi,t) = 1 + Et−1 (ln(MtRi,t)) + Et−1 (zi,t) , or, (50)

0 = Et−1 (MtRi,t)− 1 = Et−1 (ln(MtRi,t)) + Et−1 (zi,t) , (51)

where (51) is a direct consequence of the Asset-Pricing Equation (2), since its left-hand
side cancels out yielding:

Et−1 (zi,t) = −Et−1 {ln(MtRi,t)} . (52)

This first shows that the expectation of the higher-order terms, Et−1 (zi,t), will be
solely a function of Et−1 {ln(MtRi,t)} if the Pricing Equation holds. Second, zi,t ≥ 0 for
all (i, t). Therefore, Et−1 (zi,t) ≡ γ2

i,t|t−1 ≥ 0, and we denote it as γ2
i,t|t−1 to stress the fact

that it is non-negative.

Let γ2
t|t−1 ≡

(
γ2

1,t|t−1 , γ
2
2,t|t−1 , ..., γ

2
N,t|t−1

)′
and εt ≡ (ε1,t, ε2,t, ..., εN,t)

′ stack respec-

tively the conditional means γ2
i,t|t−1 and the one-step forecast errors εi,t. Then, from the
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definition of εt we have:

ln(MtRt) = Et−1{ln(MtRt)}+ εt

= −γ2
t|t−1 + εt. (53)

Denoting by rt = ln (Rt), which elements are denoted by ri,t = ln (Ri,t), and by mt =
ln (Mt), (53) yields the following system of equations:

ri,t = −mt − γ2
i,t|t−1 + εi,t, i = 1, 2, . . . , N. (54)

The system in equation (54) generalizes the result in equation (3), where Gaussianity
was imposed for the sake of simplicity. The first main difference here is that the term
γ2
i,t|t−1 is not a constant and it has serial correlation. The second main difference is that
εi,t is not Gaussian. The system (54) shows that the (log of the) SDF is a common feature,
in the sense of Engle and Kozicki (1993), of all (logged) asset returns8.
The sources of cross-sectional variation in every equation of the system (54) are εi,t

and γ2
i,t|t−1 . However, as we show next, the terms γ2

i,t|t−1 are a linear function of the
lagged εi,t, tying the cross-sectional variation in (54) ultimately to εi,t.
From Assumption 2, {ln (Mt)} and {ln (Rt)} are joint covariance-stationary processes

with finite first and second moments. This yields covariance-stationarity for {ln (MtRt)}
as well. We then apply Wold’s Theorem to write the individual Wold representations as:

ln(MtRi,t) = mt + ri,t = µi +
∞∑
j=0

bi,jεi,t−j, i = 1, 2, . . . , N, (55)

where, for all i, bi,0 = 1, |µi| <∞,
∑∞

j=0 b
2
i,j <∞, and εi,t is a white-noise process. Using

(52), in light of (55), leads to:

γ2
i ≡ E(zi,t) = −E {ln(MtRi,t)} = −µi, (56)

which is well defined and time-invariant under Assumption 2. Taking conditional expec-
tations Et−1 (·) of (55), allows computing:

γ2
i,t|t−1 = Et−1 (zi,t) = −Et−1 {ln(MtRi,t)} = −γ2

i −
∞∑
j=1

bi,jεi,t−j, i = 1, 2, . . . , N,

leading to the following system, once we consider (54):

ri,t = −mt − γ2
i + εi,t −

∞∑
j=1

bi,jεi,t−j, i = 1, 2, . . . , N. (57)

8For any two economic series, a common feature exists if it is present in both of them and can be
removed by linear combination. Hansen and Singleton (1983) were the first authors to exploit this
property of (logged) asset returns in the context of a VAR model. The concept of common features was
proposed 10 years later by Engle and Kozicki (1993).
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Equation (57) generalizes equation (3), where now the error term, εi,t−
∑∞

j=1 bi,jεi,t−j,
has serial correlation, capturing the dynamic nature of γ2

i,t|t−1 . As before, we will proceed
performing an OLS projection of:

εi,t −
∞∑
j=1

bi,jεi,t−j, i = 1, 2, . . . , N, (58)

onto mt−E(mt) in order to obtain a diversifiable error term in the cross-sectional dimen-
sion. As shown below, despite the dynamic nature of (58), the OLS projection will make
it an idiosyncratic error term. To advance, we need to introduce some notation to be able
to deal with multivariate wold representations in the context of joint weak-stationarity.
From joint weak-stationarity of Xt = (mt, r1,t, r2,t, · · · , rN,t)′, we get a vector wold

representation as follows: 
mt

r1,t

r2,t
...
rN,t

 =


E(mt)
E(r1,t)
E(r2,t)
...

E(rN,t)

+
∞∑
j=0

Ψj


εmt−j
µ1,t−j
µ2,t−j
...

µN,t−j

 , (59)

with Ψ0 = IN+1, and,

E




εmt
µ1,t

µ2,t
...

µN,t




εmt−j
µ1,t−j
µ2,t−j
...

µN,t−j


′ =


Ω, for j = 0

0, for j 6= 0
, (60)

which we can rewrite conveniently as a system of individual wold representations:

mt = E(mt) +

∞∑
j=0

cjε
m
t−j, with c0 = 1, and, (61)

ri,t = E(ri,t) +
∞∑
j=0

di,jµi,t−j, with di,0 = 1, i = 1, 2, · · · , N. (62)

To be able to arrive at the individual wold representations in (61) and (62) from (59),
we have to re-scale the lagged terms on the right-hand side of (59). Indeed, for every
equation in (59), these terms are linear combinations of lagged

(
εmt , µ1,t, µ2,t, · · · , µN,t

)′
.

To obtain the convenient form of (61) and (62) in terms of their respective one-step
innovations

(
εmt , µ1,t, µ2,t, · · · , µN,t

)′
, one has to re-scale error terms as follows: the µi,ts

are re-scaled in terms of εmt as ε
m
t = σεm

σµi
µi,t, and the µk,ts are re-scaled in terms of µi,t

as µi,t =
σµi
σµk

µk,t, where σµi , σµk and σεm are the standard deviations of µi,t, µk,t and
εmt , respectively. To maintain the equality in (59), we have to adjust the moving-average
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coeffi cients in the matrices Ψl, l = 1, 2, · · · , using, respectively, the reciprocals of the
scales used above.
It is important to stress that, due to the nature of (60), the following covariance

structure for the errors εmt , µi,t−j, and µk,t−j applies:

E
[
εmt µi,t−j

]
=


γµiεm , for j = 0

0, for j 6= 0
and E

[
µi,tµk,t−j

]
=


σ2
µi
, for k = i and j = 0

γµiµk , for k 6= i and j = 0

0, for j 6= 0

,

(63)
where γµiεm and γµiµk are cross covariances between ε

m
t and µi,t, and µi,t and µk,t, respec-

tively, while σ2
µi
is the variance of µi,t.

With the setup in (61), (62), and (63), given joint stationarity ofXt = (mt, r1,t, r2,t, · · · , rN,t)′,
we can rewrite (58) for every i = 1, 2, · · · , N , as follows:

εi,t −
∞∑
j=1

bi,jεi,t−j =
(
µi,t + εmt

)
−
∞∑
j=1

cjε
m
t−j −

∞∑
j=1

di,jµi,t−j

=
(
µi,t + εmt

)
−
∞∑
j=1

cjε
m
t−j −

∞∑
j=1

di,jµi,t−j −
(
µi,t + εmt

)
+
(
µi,t + εmt

)
= 2

(
µi,t + εmt

)
−
∞∑
j=0

cjε
m
t−j −

∞∑
j=0

di,jµi,t−j

= 2
(
µi,t + εmt

)
− (mt − E(mt))− (ri,t − E(ri,t)) .

It is important to emphasize that, although εi,t −
∑∞

j=1 bi,jεi,t−j has an infinite lag
structure, perhaps suggesting that we need to control for an infinite number of factors
(or of lags of mt), we were able to rewrite it as function of mt alone: both (mt − E(mt))
and (ri,t − E(ri,t)) are functions of mt alone, which is also the case of

(
µi,t + εmt

)
, which

is certainly a function of mt, but is orthogonal to its lags. Hence controlling for pervasive
factors only requires to compute the OLS projection of εi,t−

∑∞
j=1 bi,jεi,t−j ontomt−E(mt).

This is very important, since it fits exactly the same procedure done in Section 2.1 —
equation (8).
Using (63), first, we compute:

COV

[
mt,

(
εi,t −

∞∑
j=1

bi,jεi,t−j

)]
= E

{
(mt − E(mt))

[
2
(
µi,t + εmt

)
−

(mt − E(mt))− (ri,t − E(ri,t))

]}
= 2

(
γµiεm +VAR (εmt )

)
−VAR (mt)− COV (mt, ri,t) .

Based on this result, we can compute the OLS projection coeffi cient of εi,t−
∑∞

j=1 bi,jεi,t−j
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onto mt − E (mt) as:

δi,m =
COV

(
mt, εi,t −

∑∞
j=1 bi,jεi,t−j

)
VAR (mt)

=
2
(
γµiεm +VAR (εmt )

)
−VAR (mt)− COV (mt, ri,t)

VAR (mt)
,

and finally write the whole projection for every i = 1, 2, · · · , N , as:

εi,t −
∞∑
j=1

bi,jεi,t−j = δi,m (mt − E (mt)) + ξi,t,

where now ξi,t has serial correlation but is devoid of any pervasive effects since it is
orthogonal to mt − E (mt). It also has a zero unconditional mean.
As before, we can now rewrite (57) as a factor model:

ri,t = −
(
γ2
i + δi,mE (mt)

)
+ βimt + ξi,t, i = 1, 2, . . . , N, where,

βi = δi,m − 1, (64)

for which:

plim
N→∞

1

N

N∑
i=1

ξi,t = 0.

Since the setup in (64) is identical to that of (9), we can repeat all the steps in Section
2.1 leading to Proposition 1. Hence, we can re-state our main result here.9

Theorem 2 Under Assumptions 1-3, as N, T → ∞, with N diverging first and T di-
verging later, the realization of the SDF at time t, denoted by Mt, can be consistently
estimated using:

M̂t =
R
G

t

1
T

T∑
j=1

R
G

j R
A

j

,

where R
G

t =
∏N

i=1R
− 1
N

i,t and R
A

t = 1
N

N∑
i=1

Ri,t are respectively the geometric average of the

reciprocal of all asset returns and the arithmetic average of all asset returns.

It is important to note that M̂t is a function of N and T . The denominator explicitly
shows that it depends on T and dependence on N is implicit since R

G

t and R
A

t are
respectively geometric and arithmetic averages in the cross-sectional dimension. The
only reason why we do not explicitly state its dependence on N and T is to avoid a
cumbersome notation for M̂t.

9Note, however, that the role previsously played by σ2i /2 is now played by γ
2
i , but otherwise all else

is the same.
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