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Abstract
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1 Introduction

Understanding how the interplay between market forces and institutions can shape envi-

ronmental outcomes lies at the core of contemporary policy debates. Over the past cen-

turies, periods of economic prosperity have commonly happened to the detriment of the

environment. Deforestation, intentional fires, and pollution are recurring examples of how

human activities impact the environment. Moreover, the expected increases in popula-

tion and income in many countries will likely further stress the environment. In response,

climate mitigation policies have been implemented to promote behavioral responses and

counteract the environmental costs associated with economic activity. These policies aim

to manage greenhouse gas (GHG) emissions and, thus, are crucial to limiting the estimated

increase in global temperatures.

Despite GHG emissions being a pressing global challenge, systematic evidence on how

periods of economic boom affect these emissions is rather scarce. This paper aims at fill-

ing this gap by making two contributions. First, we provide an in-depth analysis of the

pathways through which economic growth affects GHG emissions. Second, we investigate

the effects of macroeconomic conditions on environmental policies by assessing how eco-

nomic booms affect take-up of climate mitigation policies.

To assess the relationship between growth and emissions, we study the effects of a

strong shift in commodity prices in the 2000s and 2010s on Brazil’s agricultural sector—

a suitable setting to study our research question.1 Agriculture in Brazil is an important

sector of economic activity such that commodity booms can lead to substantial produc-

tion responses. Besides, food production is a major driver of biodiversity loss (Dasgupta,

2021) and accounts for between a quarter and a third of the world’s GHG emissions over

the past decades (Poore & Nemecek, 2018; IPCC, 2019; Crippa et al., 2021).2 Furthermore,

Brazil has some of the largest biomes on earth (e.g., the Amazon). Therefore, environmen-

tal preservation has consequences for the world at large and has been widely debated, with

data showing significant deforestation, fires, and GHG emissions.

Do commodity booms always come at an environmental cost? Conceptually, produc-

tion responses to commodity booms can generate net-positive, net-zero, or net-negative

GHG emissions. Deforestation and fires, for instance, are carbonizing factors as they are as-

sociated with net-positive emissions.3 By changing production incentives, booms may lead

1The commodity boom we study is a period of sustained demand for agricultural and mineral commodi-
ties led by China and other countries. For more details, see Section 2.

2Food production is estimated to use up to half of the world’s habitable land and 70% of global freshwater.
3Although countries (including Brazil) legislate against the use of fires, the use of fires by agricultural pro-

ducers to clear land and promote deforestation is a pervasive feature in many countries.
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to deforestation and fires in new and existing agricultural areas. Alternatively, booms may

increase production intensity, which would lead to lower GHG emissions (decarbonizing

factors). Finally, some production responses have an intrinsically ambiguous effect. Booms

change relative prices (i) between crops and livestock and (ii) within crops (crop mix). Cat-

tle raising and selected crops (such as rice, sugar, and cocoa) are among the largest GHG

emitters. Therefore, booms leading to land-use conversion away from livestock and toward

a lower-emission crop mix would lead to lower GHG emissions. Since carbonizing and de-

carbonizing factors generate conceptually ambiguous effects, the environmental impact of

commodity booms is ultimately an empirical analysis and context specific.

Using a shift-share design, we construct a commodity exposure index for each munic-

ipality in Brazil.4 The exposure index uses the time-series variation of international com-

modity prices and the spatial variation in agricultural suitability (based on agro-climatic

variables). We start by showing that localities more exposed to the commodity boom in-

crease production, as measured by a positive impact on local gross domestic product (GDP).

Using satellite data, we find that greater exposure generates measurable effects on defor-

estation and fires. Specifically, the elasticity of deforestation and fires with respect to the

commodity exposure index is about 0.8 and 0.4, respectively.

To further understand the role of carbonizing and decarbonizing factors, we assess the

impacts on production intensity, land-use conversion, and crop mix. We find an increase of

crop output per hectare (a decarbonizing factor), but land allocation shifts toward a higher-

emissions crop mix. In addition, we also find an increase in pasture areas for cattle-raising

activities, an important carbonizing factor. Taken together, these different margins of ad-

justment indicate an ambiguous effect on GHG emissions. Our results highlight an impor-

tant point: one needs to consider the multiple ways commodity exposure affects conserva-

tion to assess the overall environmental impacts.

To measure the net effect of the commodity boom, we gather novel data on GHG emis-

sions combining satellite and field-collected data. Carbonizing factors (namely, deforesta-

tion, fires, and cattle-raising expansion) dominate as localities more exposed to the com-

modity boom present an increase in net GHG emissions.5 A heterogeneity analysis indi-

cates that the effects of commodity prices on deforestation, fires, and GHG emissions are

significantly higher in the Amazon and the Cerrado—Brazil’s major biomes.

We perform different robustness exercises and specification tests following the advances

of the shift-share design literature (e.g., Goldsmith-Pinkham, Sorkin, & Swift, 2020; Borusyak,

4Brazil’s municipalities are autonomous administrative entities roughly equivalent to U.S. counties.
5We also show that net GHG emissions per hectare (a measure of emissions’ intensity relative to input use)

increased in high-exposure municipalities.
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Hull, & Jaravel, 2022). For instance, the differential effects are not observed outside our pe-

riod of analysis, as more heavily exposed localities do not trend differently with respect

to environmental outcomes. The results are robust to several additional analyses, such as

alternative definitions of commodity exposure, inclusion of various types of control vari-

ables, multiple hypothesis correction, different empirical specifications, and alternative

standard errors’ clustering.

Our second contribution is to assess how commodity booms affect adherence to cli-

mate change mitigation policies. The importance of these policies is not specific to Brazil:

many governments worldwide have been implementing policies to incentivize mitigation

(UNEP, 2019). More specifically, we investigate how commodity exposure affects take-up of

the ABC (Agricultura de Baixo Carbono) credit program: a chief initiative to boost sustain-

able economic practices to reduce the country’s carbon footprint. As part of Brazil’s com-

mitment to multilateral cooperation to cut emissions, the ABC credit program offers sub-

sidized credit lines for farmers and livestock producers to boost environmentally friendly

management practices in agriculture.6 Our findings indicate that areas with more exposure

to the commodity boom reduced the take-up of ABC credit. The results suggest then that

high-exposure localities present lower adherence to this emission-curbing policy. Next, we

present suggestive evidence of potential mechanisms that could be underlying these novel

findings. The effect seems to be driven by a lower adoption of environmentally friendly

management practices in high-exposure localities, precisely the program’s focus.

Our paper relates to several strands of the economics literature. We first connect to the

extensive literature on the effects of economic growth on environmental outcomes (e.g.,

Grossman & Krueger, 1995; Panayotou, 2000; Foster & Rosenzweig, 2003) and, more re-

cently, to research on the impacts of economic activity on climate change (Stern, 2008;

Nordhaus, 2019).7 Our work pushes this literature forward by providing a systematic explo-

ration of net GHG emissions after considering a broad set of (market-driven) carbonizing

and decarbonizing factors. In addition, within this literature, this paper is unique in show-

ing that economic booms can further lead to environmental deterioration by affecting the

adoption of policy-driven mitigation.

We also relate to the literature on climate change mitigation policies. Importantly, stud-

ies suggest that, while legislation may be an effective way to put policies in place, voluntary

adherence to climate policies usually tends to be ineffective (e.g., Haug et al., 2010; Eskan-

6The program funds sustainable agricultural practices (such as restoring degraded pasture land and imple-
menting commercial forests) and the purchase of machine and equipment related to sustainable practices.

7We also connect to the literature investigating the effects of natural resource booms on local economic
growth (e.g., Caselli and Michaels 2013; Allcott & Keniston, 2018; Cavalcanti, Da Mata, & Toscani, 2019).
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der & Fankhauser, 2020; Fekete et al., 2021).8 In particular, our work is closely related to

the literature diving into the relationship between credit policies and deforestation (e.g.,

Assunção, Gandour, & Rocha, 2015; Assunção, Gandour, Rocha, & Rocha, 2020; Harding,

Herzberg, & Kuralbayeva, 2020). We contribute by showing an unintended consequence

from booms: lower adherence to climate mitigation policies. Our paper also adds another

piece of evidence by examining a potential mediator (management practices) explaining

the lower adherence to the emission-curbing policy. These findings have far-reaching im-

plications for topics beyond conservation by highlighting how a macroeconomic context

interferes with the adoption of externality-reducing policies.

Finally, we connect to the literature on the causes and consequences of deforestation

and fires (e.g., Barona, Ramankutty, Hyman, & Coomes, 2010; Andela et al., 2017; Bragança,

2018; Balboni, Burgess, Heil, Old, & Olken, 2021; Balboni, Burgess, & Olken, 2021). To our

knowledge, we are the first to investigate the effects of economic booms on fire outbreaks.

This is important because biomass burning is a significant contributor to emissions (Wake,

2021), and fires are a growing environmental stressor in many countries, like the United

States. Our study is closely associated with the branches on the impacts of trade shocks

and agriculture expansion on deforestation (e.g., Pfaff, 1999; Cattaneo, 2002; Burke & Em-

erick, 2016; Faria & Almeida, 2016; Chen, Chen, & Xu, 2016; Assunção, Lipscomb, Mobarak,

& Szerman, 2017; Zhang, Zhang, & Chen, 2017; Dornelas & Chimeli, 2019). We comple-

ment this literature by studying GHG emissions (a worldwide negative externality) related

to deforestation and fires.

The remainder of this paper is organized as follows. Section 2 provides some back-

ground on Brazil’s agricultural sector, the commodity boom, and the ABC Plan. Section

3 describes the empirical strategy. Section 4 presents the data, while Section 5 shows the

results. Section 6 concludes.

2 Background

2.1 Agriculture and the Commodity Boom

In the 2000s and 2010s, the world experienced a period of high international prices for sev-

eral commodities, from agriculture to minerals to energy. This period of sustained higher

prices (known as a “commodity boom" or “commodity supercycle") was triggered by in-

8In addition, studies indicate that conservation policies may not affect the economy (e.g., Koch, zu Er-
mgassen, Wehkamp, Oliveira Filho, & Schwerhoff, 2019).
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creased demand from Asian countries, especially China—whose consumption of raw ma-

terials grew at an intense pace of approximately 10% per year (WorldBank, 2021). As a re-

sult, prices shifted upward to a new level in real terms compared to the 1990s. China has

been Brazil’s number one trading partner since 2009 (Valls Pereira, 2017).

During this period, the Brazilian economy experienced an increase in several indicators

of economic activity, with data showing robust economic growth, especially from 2003 to

2012 (IMF, 2013). Over the past decades, the country has also become a leading producer

and exporter of several of the world’s most consumed commodities, such as soybeans,

maize, and beef (FAOSTAT, 2020). Production is historically concentrated in consolidated

areas of agricultural activity. However, it has expanded over unexplored areas in the past

decades, such as the Center-West region (which hosts the Cerrado biome) and the North-

ern region (which hosts the Amazon biome). During the commodity boom period, agricul-

tural output also increased: agricultural areas grew approximately 16% in 2001–2017 (Map-

Biomas, 2021), and output rose considerably (e.g., soybeans and maize output increased by

more than 150% in those years).

This increasing agricultural production associated with the boom may have resulted

in pressure against the environment—a hypothesis we formally investigate below. How-

ever, the impacts of the agricultural booms on environmental outcomes are conceptually

ambivalent: the relative strength of carbonizing and decarbonizing factors will ultimately

drive the impacts on the environment. Deforestation, for instance, is a carbonizing factor

that has been an acute challenge over the past decades: deforestation in the Amazon and

Cerrado biomes from 2001–2017 equaled 521,000 square kilometers (greater than the size

of Spain). Most of these new open areas were occupied by agriculture.9 Data also show that

deforestation and land use correspond to approximately 55% of GHG emissions in Brazil

during the past two decades. By contrast, some characteristics of Brazil’s agricultural sec-

tor are associated with carbon sequestration (decarbonizing factors). For instance, agricul-

tural productivity has increased substantially (up to 40%), reflecting technology adoption

and better machinery for planting, seeding, and fertilizing.

2.2 ABC Credit Program

Governments throughout the world have been implementing policies to reduce green-

house gas emissions, the so-called climate change mitigation policies (UNEP, 2019). As

a commitment to multilateral cooperation in limiting the increase in global temperatures,

9Areas were estimated using official data from PRODES and Terrabrasilis for deforestation, and Map-
Biomas data on farming and pasture land. See Section 4 for more detail on the data.
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Brazil has pledged to cut emissions. The leading initiative to boost sustainability and re-

duce the country’s carbon footprint is the Agricultura de Baixo Carbono Plan.10

Established in 2010, the ABC Plan is composed of several initiatives (programs) of the

Brazilian national government, such as rural credit, insurance, climatic intelligence, and

marketing campaigns toward sustainable agricultural activities. In this paper, we focus on

rural credit for two reasons: it is the main program of the ABC Plan and the one more suit-

able for our research question. Notice that the other initiatives of the ABC Plan were not

fully implemented (ObservatórioABC, 2020). The primary legislation governing the ABC

credit program is Federal Decree number 7,390/2010, which sets the objectives, organiza-

tion, and actions to execute the program.

The green finance program aims to shape producers’ behavior to take into account ex-

ternalities that affect the environment. More specifically, it provides subsidized credit for

(low or net-zero emissions) management practices and investments in farming and live-

stock. The ABC finances several production techniques such as no-till planting; convert-

ing degraded pastureland into productive pasture or crops; and implementing integrated

systems (crops, livestock, and planted forests), commercial forests, and animal waste treat-

ment systems. Other areas could also be financed—such as equipment, machinery, and

production-related infrastructure—but only if related to environmentally sustainable prac-

tices (MAPA, 2016).11

Farmers can apply for credit lines for operating and investment loans from the ABC

credit program in all major banks in Brazil—which led the ABC credit line to compete with

previously existing credit lines that did not have sustainable or low-carbon goals. According

to the data, the ABC credit program has lent approximately 8.3 billion reais to farmers from

2013 to 2017—representing 10.7% of total investment credit for agriculture in the period.

3 Empirical Strategy

Our interest is to assess if the commodity boom affected environmental outcomes and ad-

herence to a climate mitigation policy. The empirical strategy is a shift-share design, which

combines time-series variation from international commodity prices and cross-section vari-

ation from agricultural suitability. The spatial (cross-section) unit of analysis is the munic-

ipality (5,570 units), and our yearly data span from 2001 to 2017. We estimate the following

10In Portuguese, the ABC Plan’s official name is Plano Setorial de Mitigação e de Adaptação às Mudanças
Climáticas para a Consolidação de uma Economia de Baixa Emissão de Carbono na Agricultura.

11The program also funds the implementation and the expansion of climate change adaptation measures.
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empirical specification:

yi t =µi +δt +βC Ei t +γXi t +ηt Wi +εi t , (1)

where yi t is the outcome of interest for municipality i at year t , µi stands for municipality

fixed effects, and δt stands for time fixed effects. Our set of dependent variables includes

carbonizing and decarbonizing factors, as well as adherence to the ABC mitigation policy.

We add the unit fixed effects µi to control for municipality unobserved fixed determinants

and time fixed effects δt to control for aggregate shocks common to all units at a specific

moment in time. The vector Xi t includes time-varying geo-climatic variables, and ηt is

the time-varying coefficient of initial municipal characteristics Wi (a set of pre-boom so-

cioeconomic variables such as population size, poverty rate, and illiteracy rate). All mu-

nicipalities have equal weights. In addition, since the variation we measure occurs at the

municipal level and errors may be correlated within the spatial units, standard errors are

clustered at the municipal level to allow for arbitrary variance-covariance structure within

municipalities.

Our primary interest is in the coefficientβ, which represents the response of our depen-

dent variables with respect to the commodity exposure index C Ei t . Let k denote a given

crop or livestock. The commodity exposure index for municipality i and time t is defined

as the inner product of “agriculture suitability” shares and commodity prices as follows:

C Ei t =
∑
k

qki Pkt (2)

where the term qki is the suitability share for crop or livestock k, which sums up to 1 across

a given k. Pkt is the real international commodity prices for crop or livestock k at time t .

To build (arguably exogenous) agriculture suitability shares qki , we follow three steps

using data from FAO-GAEZ (Food and Agriculture Organization’s Global Agro-Ecological

Zones). First, we obtain the potential yield (Aki ) for each crop or livestock k in municipality

i . The potential yield is a time-invariant measure of the maximum output given climatic

(temperature, rain, and humidity) conditions. For a given land area, the potential yield for a

crop or livestock is calculated as if that crop or livestock occupied the entire area. Therefore,

if one considers several crops and livestock, there is "double counting."

The second step consists in circumventing the double counting by applying Fiszbein

(2022)’s procedure to create output weights (based on a model of crop choice). The intu-

ition is to obtain “predicted” output weights using the fact that observed output shares wki

of each crop or livestock k in total agricultural production of municipality i is strongly in-
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duced by climatic features. More precisely, we utilize a fractional multinomial logit model—

specified as a system of equations in which the outcome variables are each wki —to calcu-

late the predicted output weight estimating the parameters by quasi-maximum-likelihood

as follows:

ŵki = E [wki |Ai] = expβk Ai

1+∑K−1
j=1 expβ j Ai

(3)

where Ai represents the vector of product-specific potential yields. Our outcome variable

ŵki is estimated using the quantity share of production of each crop k for municipality

i for a pre-boom period (i.e., the average output of each product from 1996 to 2000). By

construction, the predicted weights for each municipality add up to 1, that is,
∑K

j=1 ŵki = 1.

We then multiply the estimated weight ŵki and the potential yield Ai k to obtain the

(weighted) output potential Q̄ki in tons of production of k in municipality i . Finally, the

third step to calculate qki is to transform Q̄ki into a share of production for crop or livestock

k in municipality i relative to the rest of the municipalities that also produce k. In sum, the

agriculture suitability shares qki uses a (weighted) measure of maximum production based

on climatic variables.

The identifying assumption of our exposure design is that municipalities would have

had similar environmental outcomes in the absence of the commodity boom. Intuitively,

our empirical approach asks whether municipalities with a greater increase in commod-

ity exposure—for example, places in which the increase in international prices matched

their climatic-driven commodity specialization—experienced a different trajectory when

it comes to environmental outcomes. Given our research question and that the empiri-

cal strategy uses heterogeneity in municipalities’ exposure to different commodities, the

identifying assumption based on shares is more natural (Goldsmith-Pinkham et al., 2020;

Borusyak et al., 2022). The shift variable (international commodity prices), however, is as-

sumed to be exogenous to local conditions: increase in prices in our period of analysis was

triggered by worldwide demand for food and mineral commodities that is likely to be inde-

pendent of local conditions of a particular municipality.

We provide several specification checks on the plausibility of the identifying assump-

tion. Moreover, in the robustness exercises, we use three alternative measures of commod-

ity exposure, which employ other pre-boom cross-sectional exposure variables. The first

alternative commodity exposure index substitutes the suitability shares qki in Equation (2)

by pre-boom employment shares (as in Benguria, Saffie, & Urzúa, 2021). Our second ap-

proach follows Bernstein, Colonnelli, Malacrino, and McQuade (2021) and substitutes the
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shares qki by pre-boom quantity shares. Finally, our third alternative measure includes

only the FAO-GAEZ potential yields in the shares qki . See Appendix B for a detailed de-

scription of these three alternative measures.

Standard error clustering in shift-share designs could result in over-rejection due to the

possibility of shares being similar among regions with similar sectoral structures.12 Hence,

in the robustness exercises, we cluster the standard errors at the more aggregated spatial

units to account for cross-regional correlation. We also follow Adão, Kolesár, and Morales

(2019), who developed inference methods that are valid under cross-regional correlations.

In addition, we perform an inference assessment following Ferman (2021) to alleviate con-

cerns on the standard errors clustering as over- and under-rejection of the null is typically

a concern in shift-share designs.

In the interest of full disclosure, we present the effects with and without controls and

show similar results. To report our baseline results, we use the natural logarithm transfor-

mation in Equation (1) for the dependent and commodity exposure variables. In Appendix

A, we show the results using the inverse hyperbolic sine transformation (asi nh) on these

variables. Finally, we apply multiple hypothesis corrections within “families" of outcomes,

reporting usual p-values in the main analysis and p-values adjusted for correction in the

robustness section. More precisely, we use Holm (1979)’s family-wise error rates correc-

tion.

To provide raw patterns from the data, panel (a) of Figure 1 depicts the 12-month mov-

ing average of crop prices, beef prices, and overall commodity prices. Panel (b) displays the

baseline commodity exposure index. A relevant increase in commodity prices occurred

during our period of analysis. In addition, exposure to the commodity shock seems to be

widespread across Brazil’s municipalities. Finally, panel (c) illustrates the time-series evo-

lution of GHG emissions. We focus on the top and bottom parts of the commodity exposure

index distribution: the group of the 25% more exposed municipalities increased emissions

over time, while emissions for the 25% less exposed localities remained flat. The fact that

municipalities in the top and bottom parts experience a different pattern motivates a more

systematic analysis of the role of booms in guiding emissions.

12Such similar sectoral structures are present in our setting. For example, municipalities in Mato Grosso
state could have similar shares to municipalities in Paraná state, two heavily dependent soybean and maize
production regions.
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Figure 1: Commodity Prices, Exposure Index, and GHG Emissions

(a) Price Index (12-month moving average) (b) Commodity Exposure Index (2010)

(c) Raw Patterns in the Data: GHG Emissions by
Commodity Exposure

Notes. Panel (a) presents the price index for the most relevant selected commodities we utilize in the

exposure index (e.g., soybeans, maize, bovines). Panel (b) shows the commodity exposure index for year

2010. Panel (c) presents GHG index, which corresponds to the the difference of greenhouse gas emissions

(in tons of CO2eq.) in agriculture between each year (from 2001 to 2017) and first year of analysis (2001)

for the 25% most and 25% least exposed municipalities in our sample. By construction, this GHG index

is zero in 2001. Data on prices come from the World Bank and FRED; data on the commodity exposure

index stem from the FAO-GAEZ and IBGE and is further described in Section 3. GHG emission data is

from Brazil’s Climate Observatory.
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4 Data

We describe the data in three blocks related to the main empirical specification (Equation

(1)): environmental outcomes, commodity exposure index, and other data. Unless other-

wise noted, we use data at the municipality-year level from 2001 to 2017.

4.1 Environmental Outcomes

Greenhouse gas emissions. Data on GHG emissions and removals (“sinks") are from the

Climate Observatory’s Sistema de Estimativas de Emissões e Remoções de Gases de Efeito Est-

ufa—see de Azevedo et al. (2018). GHG emissions and removals are estimated for all Brazil-

ian municipalities combining satellite and field-collected data. Greenhouse gases include

carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and other gases (e.g., perfluo-

rocarbons, hydrofluorocarbons, sulfur hexafluoride, and nitrogen trifluoride). Emissions

are calculated for a wide range of activities, such as enteric fermentation of ruminant an-

imals, crop burning, soil fertilization, changes in land cover, burned forest residues and

liming, fuel combustion, and manufacturing activities. GHG removal is a process through

which greenhouse gases are withdrawn from the atmosphere and is calculated from land-

use changes and other sources of carbon sequestration, such as forest plantation and better

agricultural management practices. For each municipality, we obtain data on total GHG

emissions (henceforth, gross GHG emissions) and total GHG emissions subtracting total

removals (henceforth, net GHG emissions).

Number of fires. Satellite data on fires are from the National Institute for Space Research

(INPE) fire dataset (in Portuguese, Banco de Dados de Queimadas)—see INPE (2020a). A ref-

erence satellite collects detailed (daily) images of fires of at least 30-meter long by 1-meter

wide for each pixel of one square kilometer.13 The satellite data allow for comparisons

among municipalities over time.14 We aggregate the pixel-level fire counts to calculate the

number of fires at the municipality-year level.

Deforestation. Satellite data on deforestation are from INPE’s PRODES for municipali-

ties in the Amazon biome and INPE’s Terrabrasilis for municipalities in the Cerrado biome

(INPE, 2021a; INPE, 2021b). The Amazon and the Cerrado represent approximately 73% of

13A fire inside a pixel is counted as “one fire" whether its size is equal to the minimum detectable area (30
meters length by 1 meter width), one large fire of about one square kilometer, or several medium-sized fires. If
a fire surpasses one square kilometer, the fire count will equal the number of pixels it occupies (INPE, 2020b).

14Between June 1998 and July 2002, the reference satellite was NOAA-12 with sensor AVHRR, which cap-
tured images at the end of the afternoon. From July 2002, the reference satellite was the AQUA_M-T with
sensor MODIS, which captured images at the beginning of the afternoon.
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the country’s territory. These two databases measure the yearly deforested area in square

kilometers for each municipality. For municipalities in the Cerrado biome, the Terrabrasilis

collected data every two years between 2001 and 2012 (official data fill the gap years by

replicating the previous year’s information in the database) and yearly from 2013 on.

Climate mitigation policy: rural credit. To obtain credit information, we gather monthly

data on rural credit from the Matriz de Dados do Crédito Rural from the Central Bank of

Brazil. The data are at the municipality-year level. To be precise, data allow us to disaggre-

gate the credit data into two categories: (i) total credit of rural producers for investments in

machines, equipment, and other materials; and (ii) ABC credit for sustainable agricultural

investments and management practices. The credit data are only available for the period

2013 to 2017. All nominal variables are set to 2010 constant (real) values.

4.2 Commodity Exposure

FAO-GAEZ. Potential yields are based on the agronomical potential of each crop taking into

account climatic conditions (temperature, rain, and humidity). According to the model

documentation (Fischer et al., 2021), potential yields’ calculation assumes that the best

suitable land will be used in each grid cell—each grid is composed of an area of 9 kilome-

ters by 9 kilometers. The potential yield for each crop is aggregated across the grid cells

of each municipality, providing us with total crop potential yield at the municipal level.

We perform this procedure for the following crops: banana, barley, citrus, cocoa, coffee,

cotton, groundnut, maize, rice, rubber, sorghum, soybeans, sugarcane, tea, tobacco, and

wheat. For estimating the potential yield of bovines per hectare, we utilize the total aver-

age yield of grass, and consider the amount of dry weight grass needed to raise one bovine

head.15

Crop and livestock production. The observable output shares of the commodity expo-

sure index stem from two datasets from the Brazilian Bureau of Statistics (IBGE): Pesquisa

Pecuária Municipal and Pesquisa Agrícola Municipal. We collect information on crops and

livestock (in tons and number of heads, respectively) produced in every municipality from

1995 to 2000. We select the same crops and livestock as in the FAO-GAEZ data. The se-

lection includes temporary crops, permanent crops, and livestock based on their impor-

15One bovine head needs to eat daily 2.3% of its live weight (230 kilograms per head) to fully express its
potential weight gain. For most crops (e.g., soybeans, maize, and wheat), potential production is given in
kilograms of dry weight per hectare. For grasses (e.g., alfalfa and napier grass), yields are given in 10 kilograms
of dry weight (above ground biomass) per hectare. For sugar beet and sugarcane, production is given in
kilograms of sugar per hectare. Cotton yields are given as kilogram lint per hectare.
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tance in total production—they represent approximately 85% of agricultural production

value per year, according to IBGE data—and their cultivation is widespread across Brazil’s

regions, as shown in Appendix Table A.2.16 In addition, we set the commodity exposure in-

dex to 2010 constant (real) values using international commodity prices in U.S. dollars from

the World Bank (The Pink Sheet), Brazil’s consumer price index (IPCA index), and exchange

rate data from Ipeadata.

4.3 Additional Data

Municipal GDP data come from IBGE’s regional accounts. We are also interested in cal-

culating agricultural productivity (output per hectare), so we match (i) IBGE’s Pesquisa

Pecuária Municipal and Pesquisa Agrícola Municipal data with (ii) satellite data on pasture

and crop area from MapBiomas—which aggregates and processes granular information

(30-meter by 30-meters squares) from the Landsat satellite.

We now describe the data used in the control vectors of our empirical specification.

IBGE provides data on the population counts for each municipality, while data on latitude,

longitude, temperature, and rainfall come from Da Mata and Resende (2020). The set of de-

mographic data—such as illiteracy rates and the percentage of poor individuals—for each

municipality in 2000 is from the United Nations Development Program’s Atlas do Desen-

volvimento Humano dos Municípios.

Table A.1 in Appendix A shows the summary statistics for our variables of interest, in-

cluding our baseline specification for the commodity exposure index.

5 Results

We divide the results into six parts. First, we study the effects of commodity booms on eco-

nomic activity, deforestation, and fires. Second, we discuss the role of additional carboniz-

ing and decarbonizing factors focusing on production responses related to productivity,

land use, and crop mix. Third, the overall impacts on GHG emissions are analyzed. We

then investigate how booms affect climate mitigation policies—the ABC credit program.

Next, we perform further analyses, including the results for the Amazon biome. We finish

with robustness and specification checks.

16We transform the number of heads of cattle in tons using 230 kilos for the average bovine, considering a
conservative estimate on the bovine carcass in Brazil (IBGE, 2019). We also transform the number of banana
bunches and oranges to tonnes according to IBGE (2020).
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Our results are shown in Figures 2 through 7. Our figures follow a common format.

Each plot presents the coefficient of interest and the confidence intervals from estimating

Equation (1) with a different set of controls. In the interest of space, the figures only report

the results of the baseline commodity exposure and the natural logarithm transformation.

In the online Appendix A, we present the tables with the results when we analyze other

commodity exposure measures and use the inverse hyperbolic sine transformation.

5.1 Effects on Economic Activity, Deforestation, and Fires

We start by showing the effects on economic activity. Figure 2 shows the results for mu-

nicipal GDP. Localities more exposed to the boom present an increase in GDP: a 1% rise

in exposure leads to a 0.10% increase in GDP. The increase in GDP is consistent with pro-

duction responses from higher international commodity prices and the (mechanical) in-

fluence of the higher commodity prices in the GDP calculation. Figure 2 also documents

an increase in deforestation and fires in high-exposure localities: an increase of 1% in com-

modity prices generates approximately 0.8% more square kilometers of deforestation and

0.4% more fires.

Recall that the deforestation data are only for municipalities in the Amazon and the

Cerrado. These biomes have been undergoing the expansion of agricultural activities over

the past decades. The relevance of our results resides in showing that commodity booms

are related to the expansion of economic activity with further impacts on deforestation and

fires. These are strong carbonizing effects of commodity booms. Fires are likely related to

land clearing for livestock purposes, which we discuss in detail in Subsection 5.5.

5.2 Effects on Carbonizing and Decarbonizing Factors

Beyond deforestation and fires, production responses from commodity booms can lead to

further GHG emissions or “market-driven" decarbonization. In Figure 3, we assess the role

of land-use conversion between crops and livestock. The estimates show that a 1% rise

in exposure increases pastureland by 0.11%. Cattle raising is often associated with higher

GHG emissions, so our findings suggest that changes in land use lead to further GHG emis-

sions.

We then analyze the effects on production intensity. Figure 3 reports that livestock

productivity—measured by cattle counts over hectares allocated to pastureland—has de-

creased in areas more exposed to commodity booms. This is consistent with the idea

that rising prices generate an incentive for area expansion, which takes place by increas-
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Figure 2: Effects of Commodity Booms: Economic Activity, Deforestation, and Fires

Notes. This figure presents the results from the estimation of Equation (1) for three
dependent variables: “Local GDP", “Deforestation", and “Number of Fires". The
unit of observation is municipality-year. Local GDP is deflated to 2010 Brazilian
reais. The change in yearly deforestation is measured in squared kilometers, and
the number of fires is the yearly count. Dependent variables and the commod-
ity exposure index are transformed into log +1—see Appendix Table A.17 for the
results with the hyperbolic inverse sine transformation. Standard errors are clus-
tered at the municipal level. We show 95% confidence intervals above. Controls
include demographic variables (population size, poverty rate, and illiteracy rate)
and geo-climatic variables (temperature and rainfall).
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ing pastureland—thus reducing productivity per hectare when the number of cattle heads

does not keep pace with such area expansion.

By contrast, we find that crop productivity (crop output per hectare) has increased; a

1% increase in commodity exposure is related to a 0.12% increase in crop productivity. As

a result, the production intensity in crops leads to lower emissions. We also inspect the

role of crop mix and follow a classification of GHG emissions for each crop from Poore

and Nemecek (2018). Soybean, orange, maize, coffee, groundnut, wheat, and sorghum are

considered low-emission crops as their estimated global variation in GHG emissions, land

use, terrestrial acidification, eutrophication, and scarcity-weighted freshwater withdrawals

are considered relatively low (Poore & Nemecek, 2018). However, rice, sugarcane, cocoa,

barley, tobacco, latex, and tea are considered high-emission crops. Figure 3 indicates that

there has been crop reallocation from lower- toward higher-emission crops; a 1% increase

in exposure generates a 0.70% decrease in cropland allocated to lower-emission crops.

Taken together, the analysis of land use, productivity, and crop mix shows that the com-

modity boom generated production responses leading to higher emissions as well as pro-

moting mitigation.

5.3 Effects on GHG Emissions

We now turn to the broad implications of commodity booms for net greenhouse gas emis-

sions. We run our baseline empirical specification with four measures of GHG emissions as

dependent variables: (i) total (gross) emissions, (ii) gross intensity emissions, (iii) net emis-

sions, and (iv) net intensity emissions. The intensity measures are given by GHG emissions

divided by agricultural area.

Figure 4 reports that high-exposure localities present higher gross emissions. GHG

emissions rise about 0.32% with a 1% increase in exposure to commodity booms, reflecting

Brazil’s large agricultural and agribusiness sectors and their spillovers in the economy. In

addition, after taking into consideration carbonizing and decarbonizing factors, net emis-

sions increase in high-exposure localities. The fact that the magnitude of net emissions is

not statistically different from that of gross emissions is consistent with our findings that

few production responses are decarbonizing (more precisely, only the increasing output

intensity in crops).

Finally, intensity measures reveal the effects of commodity exposure on the amount of

GHG emissions (gross and net) relative to input use. Both gross and net GHG emissions

per hectare present high responses to exposure, reinforcing that carbonizing factors are

relevant in our context.
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Figure 3: Effects of Commodity Booms: Land Allocation, Crop Mix, and Productivity

Notes. This figure presents the results from the estimation of Equation (1) for
four dependent variables: “Pasture Land", cattle “Heads per Hectare", “Crop pro-
duction per Hectare", and “Low Emission Crops". The unit of observation is
municipality-year. Low Emission Crops is the area taken by crops that emit less
greenhouse gases, and Pasture Land is the area of natural, well-managed, or de-
graded pasture. Crop production per hectare is in tons per hectare, while cattle
heads per hectare is the count of heads divided by hectare. Dependent variables
and the commodity exposure index are transformed into l og +1—see Appendix
Table A.18 for the results with the hyperbolic inverse sine transformation. Stan-
dard errors are clustered at the municipal level. We show 95% confidence inter-
vals above. Controls include demographic variables (population size, poverty rate,
and illiteracy rate) and geo-climatic variables (temperature and rainfall).
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Figure 4: Effects of Commodity Booms: Greenhouse Gas Emissions

Notes. This figure presents the results from the estimation of Equation (1) for four
dependent variables: “Gross GHG Emissions", “Gross GHG Intensity Emissions",
“Net GHG Emissions", and “Net GHG Intensity Emissions". The unit of observa-
tion is municipality-year. Gross and net GHG emissions are measured in tons of
CO2eq. for each municipality, while intensity measures are given by emissions
divided by agricultural area in hectares. Dependent variables and the commod-
ity exposure index are transformed into log +1—see Appendix Table A.19 for the
results with the hyperbolic inverse sine transformation. Standard errors are clus-
tered at the municipal level. We show 95% confidence intervals above. Controls
include demographic variables (population size, poverty rate, and illiteracy rate)
and geo-climatic variables (temperature and rainfall).
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5.4 Impacts on Climate Mitigation Policy

This subsection assesses how the commodity boom has impacted voluntary take-up of the

ABC credit program. Since the program started in 2010 and ABC credit data are available

from 2013 on (see Section 4), we analyze the impact of booms on the ABC credit program

for the period 2013–2017. More specifically, we run Equation (1) with ABC credit as the

dependent variable and data for the restricted period of 2013–2017. As a consequence, we

analyze a period of relatively lower crop prices, but increasing beef values (recall Figure 1a).

Figure 5 displays the results. The ABC credit line as a share of total credit was nega-

tively impacted: a -0.16% change as a response to a 1% increase in commodity exposure.

Although interest rates for the ABC credit were consistently lower than traditional lines dur-

ing 2013–2017 (Vieira Filho & da Silva, 2020), producers’ take-up of the green credit line was

negatively associated with exposure. One implication from our results is that macroeco-

nomic variables can affect voluntary adherence to climate mitigation policy.

We perform two exercises to understand our results further. In the first exercise, we

explore the potential role of pro-environment management practices to provide suggestive

evidence on the channels underlying our findings. Data from the agricultural census of

2017 provide detailed cross-sectional information and allow us to study two practices in

farming and livestock: no-till farming and proper pastureland management.

No-till farming is an agricultural technique for planting and growing crops without till-

ing (“disturbing") the soil. Seeds are planted over the residues of previous crops by cut-

ting a V-slot, placing the seeds, and closing the furrow. This technique does not provoke

the rotting of organic matter in the soil, avoiding the release of greenhouse gases. In addi-

tion, planting over the residues of past crops/pastures can retain more water and nutrients,

while organic matter (CO2) in the soil also increases.

Areas with proper management practices to improve pastureland (“well-managed pas-

tureland") have undergone several human-made improvements for cattle grazing, such as

eliminating weeds and replanting of seeds adapted for grazing. Well-managed pastureland

is environment-friendly because it allows the pasture to grow more rapidly, in a process that

captures CO2 from the air due to plant growth. In addition, when animals graze appropri-

ately in a well-managed pasture, they eat plants that will subsequently grow again—thus

capturing more CO2 in the process. They also leave feces and urine in the fields, reduc-

ing the need for fertilizers.17 However, when well-managed pastureland is not intensively

17The specialized literature indicates that under a high-intensity, well-managed pasture, it is possible to
produce beef cattle while sequestering CO2 from the atmosphere due to plant growth (e.g., Oliveira et al.,
2020). Torres et al. (2017) show similar results for integrated systems, a tropical-agriculture technique ac-
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grazed by cattle, these environment-friendly benefits do not occur.

Our data allow us to compute the percentage area farmers use to practice no-till farming

and the percentage area livestock producers maintain as well-managed pastureland. Due

to constraints on the availability of data, this additional analysis cannot be conducted using

our preferred panel data model but instead with a cross-section specification. We run the

cross-section specification with management practices as the dependent variables.18

Our findings suggest that the effect is driven by high-exposure municipalities adopting

less environment-friendly management practices. Figure 5 depicts that no-till areas have

decreased in high-exposure localities (with controls). Furthermore, such municipalities

have also been negatively affected in terms of areas for well-managed pastureland. This re-

sult is considerably worse if one takes into account the lower number of heads of cattle per

hectare given in Figure 4. This means the remaining well-managed pastureland does not

present the environmental benefits it would if properly grazed. The findings are consistent

with the fact that the ABC Plan puts emphasis precisely on financing such management

practices.19

Conceptually, the results can be rationalized by producers facing a trade-off between

the adoption of greener, subsidized practices and the longer learning process adoption

takes.20 Strong economic incentives to expand production may increase the opportunity

costs of the learning process. As a result, producers in high-exposure localities end up

adopting non-green practices. Although given a greener and cheaper option for financ-

ing by the ABC program, this may explain why producers chose to take other types of credit

instead.

Last, the second exercise checks whether GHG emissions have increased in the shorter

panel period from 2013–2017. Interestingly, the results from Figure 5 show that emissions

continue to present a similar pattern—that is, increases in more exposed localities—as in

the previous analysis with the more extended panel.

cording to which a farmer grows a commercial forest, a cash crop (spring-summer), and pasture (fall-winter)
in the same area to maximize yield.

18We use the following equation: yi =α+βC Ei +γXi +ηWi +εi , where yi includes the agricultural practices
in 2017, C Ei stands for the commodity exposure index with the (same) time-invariant suitability shares and
commodity prices for 2017, Xi is the vector of socioeconomic controls in 2000, and Wi the vector of geo-
climatic variables in 2017.

19Analyzing the legislation, we did not find that the bureaucratic process is different for the ABC credit
compared to other credit types. Therefore, we can rule out the influence of bureaucracy as a mechanism.

20Brazilian census data show that management practices toward no-till and well-managed pastureland are
not widespread but have been expanding over the past years.
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Figure 5: Effects of Commodity Booms: adherence to a Climate Mitigation Policy

Notes. This figure presents the results from the estimation of Equation (1) for four
dependent variables: “% ABC Credit", “% No-Till Area", “% Good Pasture Area",
and “GHG Emissions". The unit of observation is municipality-year for % ABC
Credit, and GHG Emissions for years 2013 to 2017. We run a cross-section ver-
sion of Equation (1) for year 2017 for % No-Till Area and % Good Pasture Area.
GHG emissions are measured in tons of CO2eq. % ABC Credit corresponds to ABC
credit divided by total credit. % No-Till Area and % Good Pasture Area are mea-
sured in percentage points relative to total cropland and pastureland, respectively.
The commodity exposure index and GHG emissions are transformed into l og +1,
while the other variables remain in percentage—see Appendix Table A.20 for the
results with the hyperbolic inverse sine transformation. Standard errors are clus-
tered at the municipal level. We show 95% confidence intervals above. Controls
include demographic variables (population size, poverty rate, and illiteracy rate)
and geo-climatic variables (temperature and rainfall).
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5.5 Further Results

This subsection performs further analysis using the baseline shift-share approach to check

(i) how different biomes were affected by the boom and (ii) the relative importance of crops

versus livestock in explaining the baseline results.

In the biomes analysis, we focus on Brazil’s two most important biomes: the Amazon

and the Cerrado. The results are presented in Figure 6 and suggest that both biomes ex-

perienced high emissions, high deforestation rates, and more fires as a consequence of the

commodity boom. In particular, notice that the point estimates of deforestation and fires

are greater in the Cerrado than in the Amazon. A 1% increase in exposure to the commod-

ity cycle is associated with 1.03% more deforestation and 0.6% more fires in the Cerrado.

Notice that although fires do not occur naturally in the Amazon, the number of fires is rel-

evant: a 1% increase in exposure results in 0.40% more fires. Both biomes experienced an

increase in net GHG emissions. Therefore, these results indicate that the impacts of com-

modity booms on environmental variables—particularly deforestation and fires—were sig-

nificant in these two important biomes of Brazil.21

Crops and cattle raising may have contributed differently to the environmental impacts

we observe. To analyze the disaggregated effects, we split the commodity exposure index of

Equation (2) into two indices: livestock-only exposure index and crops-only exposure in-

dex. We find that municipalities presented a higher response to deforestation, fires, and net

GHG emissions for beef exposure—notice that in Figure 7 the coefficients from “Bovine"

are greater in magnitude than those for “Crop." Collectively, these results suggest that the

effects we observe are driven mainly by the livestock sector. The results from cattle-raising

exposure relate to the increasing area allocated to livestock and the extensive livestock pro-

duction we observe (recall Figure 3).

5.6 Robustness and Specification Checks

We perform several robustness exercises and specification tests. Here, we detail each exer-

cise and show that our findings are largely robust. In the interest of space, we only report

tables of the robustness exercises in the online Appendix A. We focus mainly on four de-

pendent variables: deforestation, fires, net GHG emissions, and ABC credit.

Alternative commodity exposure indices. We start by using the three alternative defini-

tions of commodity exposure—see Appendix A and Figure A.1 for more details. The results

21Brazil has six biomes: Cerrado, Amazon, Pantanal, Pampas, Mata Atlântica, and Caatinga.
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Figure 6: Effects of Commodity Booms: Cerrado and Amazon Biomes

Notes. This figure presents the results from the estimation of Equation (1) for three
dependent variables: “Deforestation", “Number of Fires", and “Net GHG Emis-
sions" for Cerrado and Amazon municipalities from 2001-2017. The unit of ob-
servation is municipality-year. The change in yearly deforestation is measured in
squared kilometers, and the number of fires is the yearly count. Net GHG Emis-
sions are the CO2eq. in tons per year. Dependent variables and the commodity ex-
posure index are transformed into log+1—see Appendix Table A.21 for the results
with the hyperbolic inverse sine transformation. Standard errors are clustered at
the municipal level. We show 95% confidence intervals above. Controls include
demographic variables (population size, poverty rate, and illiteracy rate) and geo-
climatic variables (temperature and rainfall). NC stands for “No Controls" and WC
stands for “With Controls".
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Figure 7: Effects of Commodity Booms: Livestock and Crops

Notes. This figure presents the results from the estimation of Equation (1) for three
dependent variables: “Deforestation", “Number of Fires", and “Net GHG Emis-
sions" for Brazilian municipalities from 2001 to 2017. We analyze the effects esti-
mating Equation (2) and splitting the commodity exposure index into a livestock-
only exposure index and crops-only exposure index (“Bovine" and “Crop", respec-
tively). The unit of observation is municipality-year. The change in yearly defor-
estation is measured in squared kilometers, and the number of fires is the yearly
count. Net GHG Emissions are the CO2eq. in tons per year. Dependent variables
and the exposure indexes are transformed into log +1—see Appendix Table A.22
for the results with the hyperbolic inverse sine transformation. Standard errors
are clustered at the municipal level. We show 95% confidence intervals above.
Controls include demographic variables (population size, poverty rate, and illiter-
acy rate) and geo-climatic variables (temperature and rainfall). NC stands for “No
Controls" and WC stands for “With Controls".
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displayed in Appendix Tables A.3, A.4, and A.5 support the claim that deforestation, fires,

net GHG emissions, and ABC credit are robust to these alternative measures.

Inference. We also tested whether the results are robust to alternative clustering of the

standard errors. We perform an inference assessment proposed by Adão et al. (2019) to ac-

count for possible cross-regional correlation in the error terms. Appendix Table A.6 shows

that the significance of the results holds after applying the inference correction. We also

performed an inference assessment following Ferman (2021), shown in Appendix Table

A.7, which further alleviates concerns of the clustering at the municipal level. Moreover, in

Appendix Table A.8, we cluster the standard errors into micro-regions and meso-regions.

Micro-regions are sets of contiguous municipalities that share a common local labor mar-

ket, while meso-regions are sets of contiguous micro-regions. Once more, the significance

of the results is highly robust.

Multiple Hypothesis Testing. We use Holm (1979)’s family-wise error rates correction to

adjust the p-values of individual tests as a function of the number of tests (outcomes). The

intuition of the correction is the following. Let α be the level of statistical significance and

S be the number of outcomes within a “family." We consider outcomes within each of the

Subsections 5.1–5.4 as a separate “family" (e.g., outcomes in Subsection 5.1 are consid-

ered one family of outcomes; outcomes in Subsection 5.2 are considered another family).

Within each family, the most significant hypothesis is rejected if the associated p-value is

lower than α/S, which is equivalent to a Bonferroni correction. The second most signifi-

cant hypothesis is rejected if the associated p-value is lower than α/(S −1). Finally, the j th

most significant hypothesis is rejected if the associated p-value is lower than α/(S − j +1).

Appendix Table A.9 presents the multiple hypothesis-testing exercise. The results strongly

support the significance of our main results.

Pre-trends. We perform a dynamic differences-in-differences analysis to study the pre-

and post-treatment effects of the commodity boom. More specifically, we estimate the

following specification:

yi t =
J∑

τ=− j
βτ ·

[∑
k

qki · (Periods After Event=τ)

]
+γXi t +ηt Wi +µi +δt +εi t , (4)

yi t is the environmental outcome in municipality i in period t , qki is the agriculture suit-

ability share for crop or livestock k in municipality i , and µi and δt are municipality and

time fixed effects, respectively. The indicator variable “Periods After Event=τ" takes a value
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of one τ periods away from the beginning of the commodity boom period and zero other-

wise. The vector Xi t includes time-varying geo-climatic variables, and Wi is the set of so-

cioeconomic variables. Standard errors are clustered at the municipality level. The param-

eter of interest is β, the effect of being exposed to the boom. Each coefficient βτ should be

interpreted as a change relative to the base period, which is the omitted coefficient βτ=−1.

We let the year 2002 be the base period.

Data constraints do not allow us to use the baseline data on deforestation, fires, and

emissions for the analysis before the boom. Therefore, we leverage another dataset in the

dynamic difference-in-differences analysis: the MapBiomas dataset, which collects gran-

ular information (30-meter by 30-meter squares) from the Landsat satellite between 1985

and 2017 that uses machine-learning techniques to classify the usage of a given pixel of

land. Land can be classified into various uses, such as pasture, agriculture, urban, and for-

est areas. See MapBiomas (2021) for further details. In particular, we use data on forest

cover (“Natural Forest Area") in our analysis.

Figure 8 depicts the results when we estimate Equation (4) using forest cover as the de-

pendent variable. This complementary empirical strategy coherently documents a strong

increase in deforestation, as measured by a decreasing natural forest cover area. Higher-

and lower-exposure localities evolved similarly during the period before the boom, sug-

gesting the absence of different pre-trends in deforestation and supporting the main iden-

tifying assumption.22

GPSS Test. Although we showed no anticipatory effects in deforestation, other potential

threats to our identification strategy and interpretation of our results could still be present.

For instance, since our identification assumption is based on exogenous shares, a threat

would occur if individual shares could predict the outcomes through channels other than

the commodity boom. To provide supporting evidence that our results are unlikely driven

by confounding trends, we follow Goldsmith-Pinkham et al. (2020) to calculate the Rotem-

berg Weights for each commodity-specific agricultural suitability share. The intuition of

these weights is to capture the degree of sensitivity to misspecification by decomposing

the agricultural suitability share qki into a weighted combination based on each crop or

livestock. Appendix Table A.11 shows the Rotemberg Weights for all 14 crops and one live-

22To further check pre-trends, Appendix Table A.10 uses the baseline data on deforestation, fires, and net
GHG emissions and estimates Equation (1) for the period 2001–2004 when the commodity boom had not yet
become fully intense. Results are either not statistically significant or small in magnitude.
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Figure 8: Dynamic Difference-in-Differences: Natural Forest Area
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(a) Dependent variable: Forest Area

Notes: The figure plots the coefficients from estimating Equation (4). Data on “Natural Forest Area" (Forest
Formation plus Savannah Formation) is from MapBiomas. Controls include demographic variables (popu-
lation size, poverty rate, and illiteracy rate) and geo-climatic variables (temperature and rainfall). Standard
errors are clustered at the municipality level. Confidence intervals: 95%.

stock that we utilize in our baseline exposure design.23 Weights are skewed toward three

crops—cocoa, latex, and banana represent up to 47% of the weights.

We perform two checks. First, we test in Appendix Table A.12 whether covariates can

explain a larger variation in shares when compared to our baseline exposure shift-share

variable. The R2 are significantly higher for our main outcome variables (deforestation,

fires, and GHG emissions) when compared to the R2 from the relationship of our baseline

controls and most relevant shares (latex, cocoa, and banana shares; plus bovine, soybean,

and maize shares, which are shown due to their importance to Brazil’s agricultural sector).

Second, we check for pre- and post-treatment effects for each individual crop or livestock

using the dynamic difference-in-differences specification (Equation (4)) and natural for-

est area as the dependent variable. Figure A.2 shows results for latex, cocoa, and banana,

plus bovine, soybeans, and maize. Again, there are no significant pre-trends (except for

soybean). Hence, our tests broadly suggest that our findings are unlikely to be driven by

confounding trends. Moreover, the results suggest that no individual crop or livestock is

driving the results, as the decrease in forest area is verified overall and does not seem to be

driven by any particular crop or livestock.

Other empirical specifications. In Appendix Table A.13, we run a Poisson fixed effects re-

gression to account for the fact that the number of fires is a count variable. Results are

23We use 2013 as a cross-section year to estimate the Rotemberg Weights due to the higher prices observed
in that year. See the online Appendix for more details on the calculation of these weights.
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robust after estimating using that alternative model. We also run a first difference model in

Appendix Table A.14. Our baseline results are also robust to this new empirical specifica-

tion.

Brazil as top producer. Brazil is a major producer and exporter of several commodities

(e.g., soybeans, maize, and beef) and thus may affect prevailing prices. Hence, one might

consider that some individual commodity could have its price affected by production changes

inside one or more of Brazil’s municipalities. Therefore, we perform a robustness check in

which we exclude from our commodity index from Equation (1) one relevant commodity

at a time. Results are qualitatively similar and shown in Appendix Table A.15.

Placebo exercise using mineral booms. International prices of iron ore also increased

steeply during our analysis period—as did agricultural commodity prices. The extent to

which mineral production impacts environmental outcomes should be different: agricul-

tural production is diffused throughout the country, whereas mineral production is con-

centrated in pockets. In Appendix Table A.16, we run a placebo exercise with mineral

production, using municipalities that collected a mining tax—CFEM—to proxy for the im-

portance of such sector in a municipality’s economy. We build a new commodity expo-

sure index using lagged shares of CFEM collection and data on iron ore prices, the most

widespread mining commodity in Brazil. Reassuringly, our findings are near zero in mag-

nitude and statistically insignificant for deforestation, the number of fires, net GHG emis-

sions, and ABC credit.

Transformations of the dependent variable. Recall that our baseline results use the log+1

transformation for the dependent variables and the commodity exposure index. We inves-

tigate and find that results are robust when using the alternative hyperbolic inverse sine

transformation—see Appendix Tables A.17–A.22. We also test for other log transformations

in Appendix Table A.23—see description of these transformation in the online Appendix B.

Results remain largely robust for all these checks.

Alternative definitions of spatial units. Furthermore, we perform an exercise using micro-

regions, the spatial units that are more related to the concept of local labor markets. IBGE

defines micro-regions, and there are 510 units in our period of analysis. Since micro-

regions are more aggregated spatial units, this exercise aims to control for spillovers to

neighboring regions, which may be experiencing pressures from the expansion of eco-

nomic activities. Table A.24 reports, however, that results are robust when using the def-

inition of micro-regions. We also carry out an exercise with Minimum Comparable Areas

(MCAs), which are sets of municipalities whose borders were constant over the study pe-
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riod. Historically, Brazil has undergone the process of detachments and splits of munici-

palities. In 1940, there were 1,574 municipalities; in 2000, there were 5,507 (Cavalcanti et

al., 2019). From 2001–2017, approximately 50 new municipalities were created. We show in

Table A.25 that results are unchanged when using the concept of MCAs.

Scaling up the dependent variables. Finally, we divide our dependent variables by (i) the

population size in 2000, and (ii) the agricultural area (hectares) in 2001—see Tables A.26

and A.27, respectively. The results are again largely robust.

6 Conclusion

In this paper, we study how commodity booms affect the primary driver of climate change:

greenhouse gas emissions. Commodity booms are associated with carbonizing factors

(e.g., deforestation and fires) as well as decarbonizing factors (e.g., higher crop productiv-

ity). It is, thus, ex ante unclear whether commodity booms generate an increase in net GHG

emissions. Taking into consideration carbonizing and decarbonizing factors, we show that

Brazilian localities more exposed to commodity booms present an increase in net GHG

emissions. Our findings highlight that market forces can promote GHG mitigation (that

is, decarbonizing factors as “market-driven" mitigation), but one needs to consider several

pathways to assess how economic growth affects net emissions.

Curbing GHG emissions is deemed to be essential to tackle climate change. In partic-

ular, managing greenhouse gas emissions is key to countering the increase in global tem-

peratures. Our findings on the carbon footprint of booms generated by worldwide demand

for food have relevant implications. Carbonizing factors such as deforestation and fires

can have adverse impacts by affecting infant, child, and adult health (e.g., Reddington et

al., 2015; Rangel & Vogl, 2019; Zivin, Liu, Song, Tang, & Zhang, 2019). Apart from being a

significant driver of biodiversity loss, they can also impact the world at large because of

externalities that spread beyond countries’ borders, aggravating climate-exacerbated haz-

ards.

We also document a novel fact about economic booms by providing evidence on the

extent to which they influence climate mitigation policies. We show that the take-up of

a credit line promoting sustainable agricultural practices was lower in localities more ex-

posed to commodity booms. A policy-relevant implication is that—as countries transition

to net-zero emissions of greenhouse gases—voluntary adherence to mitigation policy is

affected by macroeconomic conditions and may need strong incentives to achieve the tar-

geted goals.
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Figure A.1: Alternative Commodity Exposure Indexes

(a) Commodity Exposure 2 (b) Commodity Exposure 3

(c) Commodity Exposure 4

Notes: We present three alternative commodity exposure indexes described with further details in Appendix
B. Panel (a) shows commodity exposure 2 using pre-boom employment shares as described by Equation (7).
Panel (b) displays commodity exposure 3 utilizing pre-period quantity shares following Equation (8). Panel
(c) presents commodity exposure 4 which uses land suitability attainable yields from FAO-GAEZ to calculate
exposure shares. Following the same pattern as in Figure 1, we select 2010 as reference year.
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Figure A.2: Parallel Pre-Trends with Rotemberg Weights’ Most Relevant Shares — Outcome
Variable: Natural Forest Area
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(a) Cocoa Shares
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(b) Latex Shares
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(c) Banana Shares
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(d) Bovines Shares
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(e) Soybeans Shares
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(f) Maize Shares

Notes: Panels (a) through (f) present the results from Equation (4) with standard errors clustered at the munic-
ipal level for outcome variable “Natural Forest Area" and shares for “Cocoa", “Latex", “Banana", “Bovines",
“Soybeans", and “Maize". We use data on Natural Forest Area (Forest Formation plus Savanna Formation)
from MapBiomas at the municipal level. Our specification includes geo-climatic controls, such as rain and
temperatures, and socio-economic controls (population, illiteracy, and poverty rates).
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Table A.1: Summary Statistics

Statistic Unit N Mean St. Dev. Min Max

Real Local GDP millions BRL 89,046 695,660.5 7,741,318.0 −19,046 698,952,189
Yearly Deforestation square Km 29,024 18.0 53.8 0.0 1,808.6
Number of Fires count 75,336 55.0 209.6 1.0 13,079
Pasture Area hectares 93,092 30,721.5 65,891.5 0.0 1,648,973.0
Number of Bovines count 94,639 18,839.5 42,737.1 0.0 1,166,583.0
Crop Area hectares 94,061 9,836.9 29,911.4 0.0 1,155,466
Lower Emission Crop hectares 94,061 7,693.8 29,018.7 0.0 1,149,321
GHG Emissions tons of CO2e 94,690 348,381.5 1,378,533.0 −1,062,874.0 100,047,782.0
GHG Emissions Intensity tons of CO2e 93,978 117.6 2,571.5 −67,958.7 274,728.7
Net GHG Emissions tons of CO2e 94,656 261,865.9 1,306,503.0 −15,574,611.0 93,873,249.0
Net GHG Emissions Intensity tons of CO2e 93,971 84.9 2,758.1 −185,374.4 272,309.6
Real ABC Credit BRL 27,339 306,196.5 1,269,969.0 0.0 88,123,692.0
No-Tillage Area hectares 10,181 4,987.2 20,614.8 0.0 547,878
Good Pasture Land hectares 11,111 12,531.6 42,136.7 0.0 2,093,813
Population count 94,690 1,794.0 45,611.0 0.0 10,435,546
Average Rain milimiters 94,010 1,397.0 508.0 201.2 4,043.5
Average Temperature degrees Celsius 94,010 22.9 3.0 13.7 31.0
Illit. Rate (2001) percentage 94,690 1.4 6.4 0.0 63.0
Povert. Rate (2001) percentage 94,690 2.4 11.1 0.0 90.8
Number of Tractors count 9,546 204.6 304.7 3.0 4,646.0
CE baseline (BRL) design 94,690 8.6 28.7 0.02 919.0
CE 2 (BRL) design 93,194 10.6 25.9 0.0 769.2
CE 3 (BRL) design 93,432 6.2 18.2 0.0 851.5
CE 4 (BRL) design 94,690 8.7 22.5 0.01 717.7

Notes. This table presents the descriptive statistics of all relevant variables taken into account in the estimations performed in this paper. The
analysis period is from 2001 to 2017. All monetary values have been deflated by the Brazilian Consumer Price Index (IPCA) calculated by IBGE
and are denominated in 2010 reais. Notice that “GHG Emissions" and “Net GHG Emissions" have negative minimum values because SEEG
estimates the sequestration of greenhouse gas gases for Brazilian municipalities, and a few of them are able to sequester more carbon than
they release, which is mathematically represented with negative values. CE baseline, CE 2, CE 3 and CE 4 represent our baseline exposure,
employment share exposure, quantity share exposure, and potential yield exposure, respectively.
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Table A.2: Most Relevant Agricultural Products

Commodity
Number of

Municipalities
Percent Change
# Municipalities

Percent Change
Prices in USD

Bovines 5,471 +17.1% +52.9%
Maize 5,259 + 12.7% +17.2%
Banana 3,873 +12.2% +46.8%
Sugar 3,878 +4.0% +0.001%
Rice 3,340 -38.7% +20.9%
Orange 3,320 -7.3% -9.5%
Soy 2,328 +37.0% +35.3%
Coffee 1,904 -11.5% +21.7%
Cocoa 318 +22.2% +17.8%

Notes. This table presents the number of municipalities which have
produced each of the agricultural products described in the column
“Commodity” for at least one year in 2006 or 2017 and the percent
change in the number of producing municipalities in the same pe-
riod. This table only presents the most relevant agricultural products
in Brazil in terms of their contribution to value added and does not in-
clude all products taken into account in our baseline commodity expo-
sure specification.

Table A.3: Shift Share Analysis Using Commodity Exposure 2 (Employment Share)

Dependent variable:

Deforestation Number of Fires Net GHG Emissions ABC Credit

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Panel A (log)

Commodity Exposure 0.780∗∗∗ 0.803∗∗∗ 0.470∗∗∗ 0.498∗∗∗ 0.152∗∗∗ 0.153∗∗∗ −3.201∗∗∗ −3.276∗∗∗

(0.067) (0.067) (0.028) (0.028) (0.028) (0.028) (0.445) (0.445)
Panel B (asinh)

Commodity Exposure 0.533∗∗∗ 0.560∗∗∗ 0.428∗∗∗ 0.453∗∗∗ −0.345∗∗∗ −0.312∗∗ −2.976∗∗∗ −3.099∗∗∗

(0.058) (0.070) (0.029) (0.030) (0.134) (0.127) (0.429) (0.429)

Initial Controls No Yes No Yes No Yes No Yes

Weather Controls No Yes No Yes No Yes No Yes

Municipality & Time FE Yes Yes Yes Yes Yes Yes Yes Yes

Observations 28,346 27,751 74,443 73,816 90,387 89,743 27,004 26,835

Notes. This table presents results from estimation of Equation (1) for dependent variables “Deforestation", “Number of Fires", and “Net GHG Emis-
sions" from 2001-2017 and “ABC Credit" from 2013-2017 for Brazilian municipalities. The dependent variables and the commodity exposure index are
transformed into log +1 in Panel A and asi nh in Panel B. The unit of observation is municipality-year. Standard errors are clustered at the municipal
level. Initial controls have time-varying coefficients, and include variables such as population size, poverty rate, and illiteracy rate. Weather Controls
utilize geo-climatic data (rainfall and temperatures). We use the commodity exposure index from Equation (7) calculated with shares 1996-2000 for
years 2001-2017 and with shares 2008-2012 for years 2013-2017. Statistical significance is given by ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A.4: Shift Share Analysis Using Commodity Exposure 3

Dependent variable:

Deforestation Number of Fires Net GHG Emissions ABC Credit

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Panel A (log)

Commodity Exposure 0.622∗∗∗ 0.610∗∗∗ 0.154∗∗∗ 0.119∗∗∗ 0.246∗∗∗ 0.250∗∗∗ −3.195∗∗∗ −3.068∗∗∗

(0.068) (0.067) (0.032) (0.032) (0.028) (0.028) (0.430) (0.430)
Panel B (asinh)

Commodity Exposure 0.470∗∗∗ 0.454∗∗∗ 0.139∗∗∗ 0.094∗∗∗ 0.129 0.101 −2.728∗∗∗ −2.737∗∗∗

(0.066) (0.066) (0.030) (0.030) (0.122) (0.118) (0.394) (0.395)

Initial Controls No Yes No Yes No Yes No Yes

Weather Controls No Yes No Yes No Yes No Yes

Municipality & Time FE Yes Yes Yes Yes Yes Yes Yes Yes

Observations (Panel A) 28,623 28,028 74,511 73,884 89,688 89,407 27,024 26,853
Observations (Panel B) 28,623 28,028 74,511 73,884 93,415 92,769 27,024 26,853

Notes. This table presents results from estimation of Equation (1) for dependent variables “Deforestation", “Number of Fires", and “Net GHG
Emissions" from 2001-2017 and “ABC Credit" from 2013-2017 for Brazilian municipalities. The dependent variables and the commodity exposure
index are transformed into l og +1 in Panel A and asi nh in Panel B. The unit of observation is municipality-year. Standard errors are clustered
at the municipal level. Initial controls have time-varying coefficients, and include variables such as population size, poverty rate, and illiteracy
rate. Weather Controls utilize geo-climatic data (rainfall and temperatures). We use the commodity exposure index from Equation (8) calculated
with shares 1996-2000 for years 2001-2017 and with shares 2008-2012 for years 2013-2017. Statistical significance is given by ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01.

Table A.5: Shift Share Analysis Using Commodity Exposure 4 (FAO-GAEZ Potential Yield)

Dependent variable:

Deforestation Number of Fires Net GHG Emissions ABC Credit

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Panel A (log)

Commodity Exposure 0.839∗∗∗ 0.968∗∗∗ 0.520∗∗∗ 0.552∗∗∗ 0.787∗∗∗ 0.834∗∗∗ −7.432∗∗∗ −7.792∗∗∗

(0.142) (0.139) (0.054) (0.055) (0.047) (0.048) (0.609) (0.612)
Panel B (asinh)

Commodity Exposure −0.654∗∗∗ −0.539∗∗∗ 0.449∗∗∗ 0.466∗∗∗ 0.597∗∗∗ 0.792∗∗∗ −8.062∗∗∗ −8.288∗∗∗

(0.169) (0.165) (0.056) (0.057) (0.181) (0.189) (0.559) (0.561)

Initial Controls No Yes No Yes No Yes No Yes

Weather Controls No Yes No Yes No Yes No Yes

Municipality & Time FE Yes Yes Yes Yes Yes Yes Yes Yes

Observations (Panel A) 29,024 28,429 75,336 74,704 90,873 90,575 27,339 27,163
Observations (Panel B) 29,024 28,429 75,336 74,704 94,656 93,993 27,339 27,163

Notes. This table presents results from estimation of Equation (1) for dependent variables “Deforestation", “Number of Fires", and “Net GHG Emis-
sions" from 2001-2017 and “ABC Credit" from 2013-2017 for Brazilian municipalities. The dependent variables and the commodity exposure index are
transformed into log +1 in Panel A and asi nh in Panel B. The unit of observation is municipality-year. Standard errors are clustered at the municipal
level. Initial controls have time-varying coefficients, and include variables such as population size, poverty rate, and illiteracy rate. Weather Controls
utilize geo-climatic data (rainfall and temperatures). We use the commodity exposure index from Equation (8) calculated with shares given by the
potetial yields from FAO-GAEZ. Statistical significance is given by ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A.6: Inference Assessment By Adão et al. (2019)

Dependent
Variable

Commodity Exposure Method St. Errors p-value Lower Ci Upper CI

(i) (ii) (iii) (iv) (v) (vi)

Deforestation
0.8273 EHW 0.1136750 3.388401e-13 0.6045243 1.050122

(n.obs: 182) AKM 0.2188124 1.562184e-04 0.3984588 1.256188
AKM0 Inf 0.1405616 -Inf Inf )

Number of Fires
0.40626 EHW 0.03478513 0.00000000 0.33808049 0.47443573

(n.obs: 990) AKM 0.23419128 0.08278906 -0.05274839 0.8652646
AKM0 0.38370943 0.23397616 -0.72573517 0.7783782

Net GHG Emissions
0.28997 EHW 0.02068598 0.0000000000 0.24942186 0.3305094

(n.obs: 2,430) AKM 0.08164061 0.0003827033 0.12995297 0.4499783
AKM0 0.09885165 0.0169517943 0.08484193 0.4723333

Notes. This table presents the results of the assessment proposed by Adão et al. (2019). We run a first difference specification of Equation (1)
for years 2006 and 2017 without any controls to assess the robustness of our results due to the possibility of correlation among the shares of
localities not necessarily close to each other. We perform that for dependent variables “Deforestation", “Number of Fires", and “Net GHG
Emissions". We use a l og transformation for the dependent variable and the commodity exposure index. In column (i) we present the
estimated coefficient and the number of observations for each regression (n. obs) in parenthesis for each dependent variable in the leftmost
column. In column (ii) we specify the methods employed in estimating the standard errors. “EHW" stands for Eicker-Huber-White standard
errors, while “AKM" stands for the method proposed by Adão-Kolesár-Morales and “AKM0" with null imposed (the reported standard error
for this method corresponds to the normalized standard error, given by the length of the confidence interval divided by 2z1−α/2 ). We used the
“ShiftShareSE" package in R to estimate these results. In order to find the results for "Deforestation", we had to drop the barley share in the
weight matrix due to collinearity in the share matrix—following Michael Kolesár (2020).

Table A.7: Inference Assessment by Ferman (2021)

Dependent
Variable

Commodity Exposure Assessment (5% test)

(i) (ii)
Deforestation 0.9952 0.04125

Number of Fires 0.5685 0.06125
Net GHG Emissions 0.8794 0.05000

Notes. This table presents the results of the assessment proposed by Ferman (2021).
We run a first difference specification of Equation (1) for years 2003 and 2013 with
controls to assess the robustness of our results due to the possibility of under- and
over-rejection. We use the log +1 transformation for the dependent variable and
the commodity exposure index. In column (i) we present the estimated coefficients
for each first difference regression with dependent variable described in the left-
most column. For regressions with dependent variables “Deforestation", “Number
of Fires", and “Net GHG Emissions" we use the commodity exposure index calcu-
lated with Equation (2). In column (ii) we show the assessment-five-percent-test
results while holding X constant—as in y = Xβ+ε. For 800 simulations, the assess-
ment yields the percentage of times the null would be rejected. Our results remain
largely significant. We use Ferman’s Stata code to run this assessment.
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Table A.8: Standard Errors Clustered at Micro- and Meso-Regions

Dependent variable:

Deforestation Number of Fires Net GHG Emissions ABC Credit

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Panel A (log)

Commodity Exposure 0.780 0.798 0.411 0.437 0.310 0.310 -4.56 -4.71
(0.183)∗∗∗ (0.186)∗∗∗ (0.0732)∗∗∗ (0.0758)∗∗∗ (0.0615)∗∗∗ (0.0616)∗∗∗ (0.602)∗∗∗ (0.604)∗∗∗

[0.280]∗∗ [0.286]∗∗ [0.112]∗ [0.117] [0.105]∗∗ [0.105]∗∗ [0.717]∗∗∗ [0.736]∗∗∗

Panel B (asinh)

Commodity Exposure 0.471 0.472 0.379 0.399 0.548 0.461 -4.15 -4.33
(0.178)∗∗ (0.178)∗∗ (0.0700)∗∗∗ (0.0741)∗∗∗ (0.164)∗∗∗ (0.157)∗∗ (0.544)∗∗∗ (0.550)∗∗∗

[0.264]∗ [0.269]∗ [0.104]∗∗∗ [0.113]∗∗∗ [0.235]∗∗ [0.211]∗∗ [0.649]∗∗∗ [0.676]∗∗∗

Initial Controls No Yes No Yes No Yes No Yes

Weather Controls No Yes No Yes No Yes No Yes

Municipality & Time FE Yes Yes Yes Yes Yes Yes Yes Yes

Observations 29,024 28,429 75,336 74,704 94,656 93,993 27,339 27,163

Notes. This table presents results from estimation of Equation (1) for dependent variables “Deforestation", “Number of Fires", and “Net GHG Emissions" from 2001-
2017 and “ABC Credit" from 2013-2017 for Brazilian municipalities. The dependent variables and the commodity exposure index are transformed into l og +1 in
Panel A and asi nh in Panel B. The unit of observation is municipality-year. Standard errors are clustered at the micro-region level in parenthesis (above) and at the
meso-region level in brackets [below]. We follow IBGE’s definition for micro and meso-regions, with 510 units and 133 units, respectively. Initial controls have time-
varying coefficients, and include variables such as population size, poverty rate, and illiteracy rate. Weather controls utilize geo-climatic variables (temperature
and rainfall). We use the commodity exposure index from Equation (2). Statistical significance is given by ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Table A.9: Multiple Hypothesis Testing Correction

Description
Dependent Variable Coefficient P-Value

Multiple Hypothesis
Test — Corrected P-Value

(i) (ii) (iii) (iv)

Figure 2

Local GDP 0.0982∗∗∗ 0.00000000 0.00000000

Deforestation 0.7979∗∗∗ 0.00000000 0.00000000
Number of Fires 0.4365∗∗∗ 0.00000000 0.00000000

Figure 3

Pasture Land 0.1110∗∗∗ 0.00000048 0.00000096
Heads/Hectare −0.1811∗∗∗ 0.00000000 0.00000000
Crop/Hectare 0.1202∗∗∗ 0.00000975 0.00000975

Lower Em. Crops −0.6989∗∗∗ 0.00000000 0.00000000

Figure 4

Gross GHG Emissions 0.3188∗∗∗ 0.00000000 0.00000000
GHG Intensity Emissions 0.4029∗∗∗ 0.00000000 0.00000000

Net GHG Emissions 0.3085∗∗∗ 0.00000000 0.00000000
Net GHG Intensity Emissions 0.4154∗∗∗ 0.00000000 0.00000000

Figure 5

% ABC Credit −0.1614∗∗∗ 0.00000000 0.00000000
% No-Till Area −0.0074 0.10600000 0.10600000

% Well-Managed Pastureland −0.0598∗∗∗ 0.00000000 0.00000000
Net GHG Emissions 0.0640∗ 0.04784435 0.09568870

Notes. This table presents the results of multiple hypothesis testing following Holm (1979), as described in Subsection
5.6. We consider outcomes within each Subsection 5.1–5.4 as a separate “family" (e.g., outcomes in Subsection 5.1
are considered one family of outcomes; and outcomes in Subsection 5.2 are considered another family). Within each
family, the most significant hypothesis is rejected if the associated p-value is lower than α/S, which is equivalent to
a Bonferroni correction. This is equivalent to multiplying the p-value by S. The second most significant hypothesis
is rejected if the associated p-value is lower than α/(S − 1). This is equivalent to multiplying the p-value by S − 1.
Finally, the j th most significant hypothesis is rejected if the associated p-value is lower than α/(S − j + 1). This
stepwise procedure stops if a hypothesis is not rejected. Hence, for each of our main results in Figures 2 through
4 described in the left-most column above, we perform this procedure—which yields a new multiple-hypothesis-p-
value presented in column (iv). Statistical significance is given by ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01, considering p-values
in column (iv).
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Table A.10: Shift-Share analysis using data for 2001–2004

Dependent variable:

Deforestation Number of Fires Net GHG Emissions

(i) (ii) (iii) (iv) (v) (vi)

Panel A (log)

Commodity Exposure −0.215 0.383 0.547∗∗∗ 1.256∗∗∗ −0.042 0.048
(0.253) (0.248) (0.144) (0.142) (0.054) (0.059)

Panel B (asinh)

Commodity Exposure −0.418 0.228 0.247∗ 0.955∗∗∗ −0.669∗∗∗ −0.482∗∗

(0.272) (0.264) (0.147) (0.144) (0.197) (0.204)

Initial Controls No Yes No Yes No Yes

Weather Controls No Yes No Yes No Yes

Municipality & Time FE Yes Yes Yes Yes Yes Yes

Observations (Panel A) 7,094 6,954 17,869 17,719 21,668 21,581
Observations (Panel B) 7,094 6,954 17,869 17,719 22,272 22,116

Notes. This table presents results from estimation of Equation (1) for dependent variables “Deforestation",
“Number of Fires", and “Net GHG Emissions" from 2001-2004 for Brazilian municipalities. The purpose is to test
our results for a period when commodity prices were relatively stable, which was followed by the super-cycle.
In Panel A, the dependent variables and the commodity exposure index are transformed into log +1. In Panel
B, variables are transformed using asi nh (the hyperbolic inverse sine). The unit of observation is municipality-
year. Standard errors are clustered at the municipal level. Initial controls have time-varying coefficients, and
include variables such as population size, poverty rate, and illiteracy rate. Weather controls utilize geo-climatic
variables (temperature and rainfall). We use the commodity exposure index from Equation (2). Statistical sig-
nificance is given by ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Table A.11: Rotemberg Weights following Goldsmith-Pinkham et al. (2020)

Crops and Livestock RWs

Cocoa 0.1696
Latex 0.1693
Banana 0.1362
Orange 0.0926
Bovines 0.0739
Rice 0.0731
Groundnut 0.044
Sugar 0.0414
Tobacco 0.0393
Soybeans 0.0351
Maize 0.0320
Wheat 0.0302
Coffee 0.0286
Barley 0.0218
Sorghum 0.0123

Notes. This table presents the
Rotemberg Weights estimated as
described in Subsection 5.6 and
online Appendix B.
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Table A.12: Test 1: Correlates of 2013 shares

Dependent variable:

Main outcome variables Most relevant commodity shares

Deforestation Number of Fires GHG Emissions Bovines Soybeans Maize Latex Cocoa Banana

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)

Commodity Exposure 0.691∗∗∗ 0.659∗∗∗ 0.813∗∗∗

(0.026) (0.019) (0.014)

Population −0.00000∗∗ 0.00000 0.00000∗∗∗ 0.000 0.000 0.000∗ 0.000 0.000 0.000
(0.00000) (0.00000) (0.00000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Average Rain −0.001∗∗∗ 0.0004∗∗∗ 0.0003∗∗∗ 0.00000∗∗∗ 0.00000∗∗∗ 0.000 0.00000∗∗∗ 0.00000∗∗∗ 0.00000∗∗∗

(0.0001) (0.00004) (0.00003) (0.00000) (0.00000) (0.000) (0.00000) (0.00000) (0.00000)

Average Temperature 0.154∗∗∗ 0.188∗∗∗ 0.153∗∗∗ 0.0001∗∗∗ 0.00001∗∗∗ 0.00001∗∗∗ 0.0001∗∗∗ 0.0001∗∗∗ 0.0001∗∗∗

(0.017) (0.007) (0.005) (0.00000) (0.00000) (0.00000) (0.00001) (0.00001) (0.00001)

Illiteracy −0.019∗∗∗ −0.015∗∗∗ −0.019∗∗∗ 0.00000∗ −0.00000∗∗ −0.00000∗∗∗ 0.00002∗∗∗ 0.00003∗∗∗ 0.00002∗∗∗

(0.004) (0.003) (0.002) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Poverty 0.009∗∗∗ 0.014∗∗∗ −0.007∗∗∗ −0.00000∗∗∗ −0.00000∗∗∗ 0.00000∗∗∗ −0.00001∗∗∗ −0.00001∗∗∗ −0.00000∗∗∗

(0.002) (0.002) (0.001) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Observations 1,663 4,024 5,521 5,530 5,530 5,530 5,530 5,530 5,530
R2 0.339 0.450 0.543 0.112 0.047 0.010 0.064 0.059 0.123
Adjusted R2 0.337 0.449 0.542 0.111 0.046 0.009 0.063 0.058 0.122

Notes. This table presents our correlates test following Goldsmith-Pinkham et al. (2020). Each column reports an OLS regression for year 2013. Columns (i) through (iii) present the cross-section results of our
main specification from Equation (1) for our main outcome variables “Deforestation", “Number of Variables", and “GHG Emissions". In columns (iv) through (ix) we report the results of our baseline controls
on some of the most relevant shares given by the Rotemberg Weights in Table A.11 plus bovines, soybeans and maize.
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Table A.13: Poisson Estimates for the Number of Fires

Dependent variable:

Number of Fires

(i) (ii)

Panel A (log)
Commodity Exposure 0.0864∗∗∗ 0.0920∗∗∗

(0.0150) (0.0153)

Panel B (asinh)
Commodity Exposure 0.0921∗∗∗ 0.0959∗∗∗

(0.0130) (0.0132)

Initial Controls No Yes

Weather Controls No Yes

Municipality Yes Yes

Observations (Panel A and B) 75,336 74,704

Notes. This table presents results from estimation of a Poisson
version of Equation (1) for dependent variable “Number of Fires"
from 2001-2017. The number of fires is the actual count of fires
per municipality. In Panel A, the dependent variables and the
commodity exposure index are transformed into log+1. In Panel
B, we utilize the hyperbolic inverse sine transformation, which
has a similar interpretation to the log transformation. The unit of
observation is municipality-year. Standard errors are clustered
at the municipal level. Initial controls have time-varying coef-
ficients, and include variables such as population size, poverty
rate, and illiteracy rate. Weather controls utilize geo-climatic
variables (temperature and rainfall). We use the commodity ex-
posure index from Equation (2). Statistical significance is given
by ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A.14: Taking the First Difference - ∆( 2003-2013)

Dependent variable:

Deforestation Number of Fires Net GHG Emissions

(i) (ii) (iii) (iv) (v) (vi)

Panel A (log)

Commodity Exposure 1.053∗∗∗ 1.017∗∗∗ 0.456∗∗∗ 0.656∗∗∗ 0.695∗∗∗ 0.659∗∗∗

(0.185) (0.186) (0.095) (0.101) (0.062) (0.069)
Panel B (asinh)

Commodity Exposure 0.803∗∗∗ 0.775∗∗∗ 0.398∗∗∗ 0.581∗∗∗ 2.043∗∗∗ 1.792∗∗∗

(0.200) (0.203) (0.100) (0.107) (0.335) (0.356)

Initial Controls No Yes No Yes No Yes

Weather Controls No Yes No Yes No Yes

Municipality & Time FE Yes Yes Yes Yes Yes Yes

Observations (Panel A) 3,484 3,414 9,070 8,994 10,747 10,708
Observations (Panel B) 3,484 3,414 9,070 8,994 11,136 11,058

Notes. This table presents results from estimation of Equation (6) for dependent variables “Deforestation", “Num-
ber of Fires", and “Net GHG Emissions" for Brazilian municipalities in 2003 and 2013. The dependent variables
and the commodity exposure index are transformed into log + 1. In Panel B, variables are transformed using
asi nh (the hyperbolic inverse sine). The unit of observation is municipality-year. Standard errors are clustered
at the municipal level. Initial controls have time-varying coefficients, and include variables such as population
size, poverty rate, and illiteracy rate. Weather controls utilize geo-climatic variables (temperature and rainfall).
We use the commodity exposure index from Equation (8). Statistical significance is given by ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01.
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Table A.15: Removing One Commodity at a Time — Most Relevant Commodities

Dependent variable:

Deforestation Number of Fires Net GHG Emissions ABC Credit

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Panel 1
Commodity Exposure - without soybeans 0.720∗∗∗ 0.743∗∗∗ 0.407∗∗∗ 0.436∗∗∗ 0.311∗∗∗ 0.309∗∗∗ −4.655∗∗∗ −4.817∗∗∗

(0.085) (0.087) (0.036) (0.036) (0.030) (0.030) (0.496) (0.497)
Panel 2
Commodity Exposure - without maize 0.762∗∗∗ 0.784∗∗∗ 0.383∗∗∗ 0.403∗∗∗ 0.301∗∗∗ 0.299∗∗∗ −4.519∗∗∗ −4.661∗∗∗

(0.087) (0.088) (0.036) (0.037) (0.030) (0.030) (0.501) (0.501)
Panel 3
Commodity Exposure - without sugar 0.810∗∗∗ 0.830∗∗∗ 0.425∗∗∗ 0.447∗∗∗ 0.315∗∗∗ 0.313∗∗∗ −4.346∗∗∗ −4.502∗∗∗

(0.087) (0.088) (0.036) (0.037) (0.030) (0.030) (0.503) (0.503)
Panel 4
Commodity Exposure - without rice 0.683∗∗∗ 0.699∗∗∗ 0.432∗∗∗ 0.452∗∗∗ 0.324∗∗∗ 0.321∗∗∗ −4.389∗∗∗ −4.507∗∗∗

(0.082) (0.083) (0.035) (0.036) (0.030) (0.030) (0.499) (0.499)
Panel 5
Commodity Exposure - without banana 0.683∗∗∗ 0.713∗∗∗ 0.414∗∗∗ 0.435∗∗∗ 0.306∗∗∗ 0.305∗∗∗ −4.712∗∗∗ −4.841∗∗∗

(0.086) (0.088) (0.036) (0.037) (0.030) (0.030) (0.505) (0.505)
Panel 6
Commodity Exposure - without orange 0.648∗∗∗ 0.670∗∗∗ 0.443∗∗∗ 0.460∗∗∗ 0.277∗∗∗ 0.274∗∗∗ −4.288∗∗∗ −4.448∗∗∗

(0.085) (0.086) (0.035) (0.036) (0.029) (0.029) (0.499) (0.499)
Panel 7
Commodity Exposure - without coffee 0.712∗∗∗ 0.753∗∗∗ 0.286∗∗∗ 0.294∗∗∗ 0.377∗∗∗ 0.387∗∗∗ −2.366∗∗∗ −2.095∗∗∗

(0.087) (0.088) (0.037) (0.037) (0.031) (0.031) (0.555) (0.560)
Panel 8
Commodity Exposure - without cocoa 0.760∗∗∗ 0.770∗∗∗ 0.326∗∗∗ 0.362∗∗∗ 0.258∗∗∗ 0.254∗∗∗ −4.676∗∗∗ −4.793∗∗∗

(0.090) (0.092) (0.036) (0.037) (0.031) (0.031) (0.527) (0.529)
Panel 9
Commodity Exposure - without bovines 0.728∗∗∗ 0.769∗∗∗ 0.253∗∗∗ 0.267∗∗∗ 0.190∗∗∗ 0.198∗∗∗ −4.276∗∗∗ −4.490∗∗∗

(0.082) (0.084) (0.033) (0.033) (0.026) (0.026) (0.419) (0.421)

Initial Controls No Yes No Yes No Yes No Yes

Weather Controls No Yes No Yes No Yes No Yes

Municipality & Time FE Yes Yes Yes Yes Yes Yes Yes Yes

Observations (Panels 1-9) 29,024 28,429 75,336 74,704 90,873 90,575 27,339 27,163

Notes. This table presents results from estimation of Equation (1) for dependent variables “Deforestation", “Number of Fires", and “Net GHG Emissions" from 2001-
2017 and “ABC Credit" from 2013-2017 for Brazilian municipalities. We use the commodity exposure index from Equation (2), but we remove one commodity for each
of the Panels 1 through 9. In Panel 1, we calculate the commodity exposure index without soybeans; in Panel 2, we calculate it without maize; and so forth up to
Panel 9. We do not take into account in this calculation all commodities used to estimate the commodity exposure index of Equation (2), and we only consider the most
relevant commodities. The dependent variables and the commodity exposure index are transformed into log+1. The unit of observation is municipality-year. Standard
errors are clustered at the municipal level. Initial controls have time-varying coefficients, and include variables such as population size, poverty rate, and illiteracy rate.
Weather Controls utilize geo-climatic data (rainfall and temperatures). Statistical significance is given by ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A.16: Placebo With Mining Data

Dependent variable:

Deforestation Number of Fires Net GHG Emissions ABC Credit

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Panel A (log)

Commodity Exposure −0.002 −0.0004 −0.031 0.093 −0.191∗∗∗ −0.198∗∗∗ −0.936 −1.099
(0.088) (0.088) (0.063) (0.063) (0.070) (0.070) (0.934) (0.945)

Panel B (asinh)

Commodity Exposure −0.006 −0.002 −0.051 0.062 0.115 0.125 −0.968 −1.106
(0.089) (0.089) (0.059) (0.059) (0.257) (0.259) (0.829) (0.837)

Initial Controls No Yes No Yes No Yes No Yes

Weather Controls No Yes No Yes No Yes No Yes

Municipality & Time FE Yes Yes Yes Yes Yes Yes Yes Yes

Observations (Panel A) 5,726 5,609 16,113 15,992 18,765 18,722 7,275 7,228
Observations (Panel B) 5,726 5,609 16,113 15,992 19,331 19,201 7,275 7,228

Notes. This table presents results from estimation of Equation (1) for dependent variables “Deforestation", “Number of Fires", and
“Net GHG Emissions" from 2005-2017 and “ABC Credit" from 2013-2017 for Brazilian municipalities. We use a different measure for
the commodity exposure index, given by Equation (2), but using a mining tax (CFEM) as proxy for mineral production shares. We use
2004 as base year for shares and 2005-2017 for iron ore international prices in Brazilian reais as shifts. The dependent variables and the
commodity exposure index are transformed into log +1 in Panel A and asi nh in Panel B. The unit of observation is municipality-year.
Standard errors are also clustered at the municipality level. Initial controls have time-varying coefficients, and include variables such
as population size, poverty rate, and illiteracy rate. Weather controls utilize geo-climatic variables (temperature and rainfall). We use
the commodity exposure index from Equation (2). Statistical significance is given by ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A.17: Effects of Commodity Booms: Economic Activity, Deforestation, and Fires

Dependent variable:

Local GDP Deforestation Number of Fires

(i) (ii) (iii) (iv) (v) (vi)

Panel A (log)

Commodity Exposure 0.0999∗∗∗ 0.0983∗∗∗ 0.7796∗∗∗ 0.7979∗∗∗ 0.4107∗∗∗ 0.4365∗∗∗

(0.0134) (0.0134) (0.0874) (0.0892) (0.0364) (0.0370)
Panel B (asinh)

Commodity Exposure 0.0907∗∗∗ 0.0876∗∗∗ 0.4706∗∗∗ 0.4723∗∗∗ 0.3785∗∗∗ 0.3990∗∗∗

(0.0135) (0.0135) (0.0869) (0.0873) (0.0364) (0.0371)

Initial Controls No Yes No Yes No Yes

Weather Controls No Yes No Yes No Yes

Municipality & Time FE Yes Yes Yes Yes Yes Yes

Observations 89,045 88,405 29,024 28,429 75,336 74,704

Notes. This table presents results from estimation of Equation (1) for dependent variables “Local GDP", “Deforestation"
and “Number of Fires" from 2001-2017. Variable “Local GDP" is the value for gross domestic product at the local level
measured in 2010 Brazilian reais, “Deforestation" is change in yearly deforestation measured in squared kilometers, while
the number of fires is the actual count of fires per municipality. In Panel A, the dependent variables and the commodity
exposure index are transformed into l og + 1. In Panel B, we utilize the hyperbolic inverse sine transformation, which
has a similar interpretation to the log transformation. The unit of observation is municipality-year. Standard errors are
clustered at the municipal level. Initial controls have time-varying coefficients, and include variables such as population
size, poverty rate, and illiteracy rate. Weather controls include geo-climatic variables (rainfall and temperature). Statistical
significance is given by ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A.18: Effects of Commodity Booms: Land Allocation, Crop Mix, and Productivity

Dependent variable:

Pasture
Land

Heads
Per Hectare

Crop Prod.
Hectare

Lower Emission
Crop Land

(i) (ii) (iii) (iv)

Panel A (log)
Commodity Exposure 0.1110∗∗∗ −0.1812∗∗∗ 0.1203∗∗∗ −0.7042∗∗∗

(0.0220) (0.0158) (0.0272) (0.0504)
Panel B (asinh)
Commodity Exposure 0.1159∗∗∗ −0.2106∗∗∗ 0.0997∗∗∗ −0.5666∗∗∗

(0.0196) (0.0168) (0.0274) (0.0440)

Initial Controls Yes Yes Yes Yes

Weather Controls Yes Yes Yes Yes

Municipality & Time FE Yes Yes Yes Yes

Observations 92,480 92,413 91,929 93,398

Notes. This table presents results from estimation of Equation (1) for dependent variables “Pas-
ture Land", “Heads Per Hectare", “Crop Prod. Hectare", and “Lower Emission Crop Land" for
Brazilian municipalities using data from years 2001 and 2017. Column (i) presents the change
in allocation of land towards pastureland. Columns (ii) and (iii) present productivity measures,
showing heads of cattle livestock per hectare and crop-productivity per hectare measured as
tons of produce per hectare. Column (iv) presents within crop allocation, from crops which are
considered Lower Emission (such as soybeans, maize, and orange) and Higher Emission (such
as rice and sugar-cane), measured as total land used by lower-emission crops. In Panel A, de-
pendent variables and the commodity exposure variable are transformed into log +1. In Panel
B, we utilize the hyperbolic inverse sine transformation, which has a similar interpretation to the
log transformation. The unit of observation is municipality-year. Standard errors are clustered at
the municipal level. Initial controls have time-varying coefficients, and include variables such as
population size, poverty rate, and illiteracy rate. Weather controls include geo-climatic variables
(rainfall and temperature). Statistical significance is given by ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A.19: Effects of Commodity Booms: Greenhouse Gas Emissions

Dependent variable:

GHG Emissions
Whole Economy

GHG Emissions
Intensity

Net GHG Emissions
Whole Economy

Net GHG Emissions
Intensity

(i) (ii) (iii) (iv)

Panel A (log)

Commodity Exposure 0.3188∗∗∗ 0.4029∗∗∗ 0.3086∗∗∗ 0.4155∗∗∗

(0.0222) (0.0273) (0.0304) (0.0321)
Panel B (asinh)

Commodity Exposure 0.2083∗∗∗ 0.2840∗∗∗ 0.4873∗∗∗ 0.3415∗∗∗

(0.0443) (0.0303) (0.1221) (0.0386)

Initial Controls Yes Yes Yes Yes

Weather Controls Yes Yes Yes Yes

Municipality & Time FE Yes Yes Yes Yes

Observations (Panel A) 93,928 91,849 90,575 89,297
Observations (Panel B) 94,010 91,919 93,993 91,919

Notes. This table presents results from estimation of Equation (1) for different versions of greenhouse gas emissions
dependent variables. Columns (i) through (iv) represent respectively: “GHG Emissions" for the whole economy
(gross), “GHG Intensity" emissions (gross), “Net GHG Emissions" for the whole economy, and “Net GHG Intensity"
emissions. In Panel A, we utilize the log +1 transformation for all dependent variables and for our commodity ex-
posure index. In Panel B, we utilize the hyperbolic inverse sine transformation, which has a similar interpretation
to the log transformation. The unit of observation is municipality-year. Standard errors are clustered at the mu-
nicipal level. Initial controls have time-varying coefficients, and include variables such as population size, poverty
rate, and illiteracy rate. Weather controls include geo-climatic variables (rainfall and temperature). Statistical sig-
nificance is given by ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A.20: Effects of Commodity Booms: adherence to a Climate Mitigation Policy

Dependent variable:

% ABC
Credit

% No-Till
Area

% Well-Managed
Pastureland

GHG
Emissions

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Panel A (log)

Commodity Exposure −0.2095∗∗∗ −0.1614∗∗∗ 0.0422∗∗∗ −0.00754∗∗∗ −0.0766 −0.0599∗∗∗ 0.0954∗∗∗ 0.0640∗∗

(0.0189) (0.0202) (0.0046) (0.0046) (0.0045) (0.0048) (0.0302) (0.0324)
Panel B (asinh)

Commodity Exposure −0.1666∗∗∗ −0.1185∗∗∗ 0.0380∗∗∗ −0.0060 −0.0678∗∗∗ −0.0547 0.0176 0.0017
(0.0161) (0.0172) (0.0039) (0.0038) (0.0037) (0.0040) (0.0377) (0.0317)

Initial Controls No Yes No Yes No Yes No Yes

Weather Controls No Yes No Yes Yes Yes No Yes

Municipality & Time FE Yes Yes No No No No Yes Yes

Observations (Panel A) 27,038 26,868 5,438 5,402 5,520 5,480 27,794 27,594
Observations (Panel B) 27,038 26,868 5,438 5,402 5,520 5,480 27,850 27,650

Notes. This table presents results from estimation of Equation (1) for dependent variables "% ABC Credit", "% No-Till Area", "% Well Managed pastureland", and
“Net GHG Emissions" from 2013-2017 for Brazilian municipalities. Columns (i) through (vi) are measured in percentage, and columns (vii) and (viii) are measured
in tons of CO2eq. Columns (iii) through (vi) present a cross-section analysis of year 2017 in which we run a similar regression to Equation (1) but without the
fixed effects for municipalities and time. In Panel A, the dependent variables for columns (vii) and (viii) and the commodity exposure index are transformed into
l og +1, apart from columns (i) through (vi) in which we use the dependent variables in percentage. In Panel B, we follow the same pattern but instead of using
the logarithmic transformation we utilize the hyperbolic inverse sine transformation. The unit of observation is municipality-year. Standard errors are clustered at
the municipal level. Initial controls have time-varying coefficients, and include variables such as population size, poverty rate, and illiteracy rate. Weather controls
include geo-climatic variables (rainfall and temperature). We use the same controls for the OLS regressions in columns (v) and (vi). Statistical significance is given
by ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A.21: Effects of Commodity Booms: Cerrado and Amazon Biomes

Dependent Variable
Cerrado Amazon

Deforestation Number of Fires Net GHG Emissions Deforestation Number of Fires Net GHG Emissions

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x) (xi) (xii)

Panel A (log)

Commodity Exposure 0.936∗∗∗ 1.036∗∗∗ 0.622∗∗∗ 0.674∗∗∗ 0.725∗∗∗ 0.743∗∗∗ 0.423∗∗∗ 0.578∗∗∗ 0.386∗∗∗ 0.402∗∗∗ 0.659∗∗∗ 0.597∗∗∗

(0.118) (0.115) (0.081) (0.082) (0.087) (0.087) (0.142) (0.154) (0.105) (0.106) (0.152) (0.149)
Panel B (asinh)

Commodity Exposure 0.529∗∗∗ 0.677∗∗∗ 0.571∗∗∗ 0.622∗∗∗ 1.583∗∗∗ 1.546∗∗∗ 0.104 0.149 0.426∗∗∗ 0.443∗∗∗ 1.749∗∗ 1.182
(0.109) (0.107) (0.078) (0.080) (0.312) (0.304) (0.154) (0.162) (0.106) (0.106) (0.840) (0.791)

Initial Controls No Yes No Yes No Yes No Yes No Yes No Yes

Weather Controls No Yes No Yes No Yes No Yes No Yes No Yes

Municipality & Time FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations (Panel A) 20,491 20,491 22,743 22,743 23,624 23,624 9,467 8,872 9,399 8,804 7,696 7,466
Observations (Panel B) 20,491 20,491 22,743 22,743 24,378 24,378 9,467 8,872 9,399 8,804 9,486 8,891

Notes. This table presents results from estimation of Equation (1) for dependent variables “Deforestation", “Number of Fires", and “Net GHG Emissions" from 2001-2017 for municipalities located in the
Cerrado and the Amazon biomes. The dependent variables and the commodity exposure index are transformed into log +1. In Panel B, all variables are transformed using the hyperbolic inverse sine.
The unit of observation is municipality-year. Standard errors are clustered at the municipal level. Initial controls have time-varying coefficients, and include variables such as population size, poverty
rate, and illiteracy rate. Weather controls include geo-climatic variables (rainfall and temperature). We use the commodity exposure index given by Equation (2). Statistical significance is given by ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01.
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Table A.22: Effects of Commodity Booms: Livestock and Crops

Dependent variable:

Deforestation Number of Fires Net GHG Emissions

(i) (ii) (iii) (iv) (v) (vi)

Panel A (log)
Commodity Exposure (beef) 1.108∗∗∗ 0.395∗∗∗ 0.885∗∗∗

(0.075) (0.040) (0.044)
Commodity Exposure (crops) 0.769∗∗∗ 0.267∗∗∗ 0.198∗∗∗

(0.084) (0.033) (0.026)

Panel B (asinh)
Commodity Exposure (beef) 0.842∗∗∗ 0.303∗∗∗ 1.463∗∗∗

(0.071) (0.034) (0.190)
Commodity Exposure (crops) 0.625∗∗∗ 0.230∗∗∗ 0.415∗∗∗

(0.083) (0.033) (0.107)

Initial Controls Yes Yes Yes Yes Yes Yes

Weather Controls Yes Yes Yes Yes Yes Yes

Municipality & Time FE Yes Yes Yes Yes Yes Yes

Observations (Panel A) 28,429 28,429 74,704 74,704 90,575 90,575
Observations (Panel B) 28,429 28,429 74,704 74,704 93,993 93,993

Notes. This table presents results from estimation of Equation (1) for dependent variables “Deforestation", “Number of
Fires", and “Net GHG Emissions" for Brazilian municipalities over 2001-2017. “Deforestation" is change in yearly defor-
estation measured in squared kilometers, while the “Number of Fires" is the actual count of fires per municipality, and
“Net GHG emissions" is measured in tons of CO2eq. In Panel A, the dependent variables and the commodity exposure
index are transformed into log +1. In Panel B, we utilize the hyperbolic inverse sine transformation, which has a similar
interpretation to the log transformation. In both panels A and B we untangle the effects using the shift-share approach
from Equation (2) first only for beef and second only for crops under “Commodity Exposure (beef)" and “Commodity
Exposure (crops)", respectively. The unit of observation is municipality-year. Standard errors are clustered at the mu-
nicipal level. Initial controls have time-varying coefficients, and include variables such as population size, poverty rate,
and illiteracy rate. Weather controls include geo-climatic variables (rainfall and temperature). Statistical significance is
given by ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A.23: Testing for Different Log Specifications

Dependent variable:

Deforestation Number of Fires Net GHG Emissions ABC Credit

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Panel A
log(y) for y>1; log(y+1), for 0<y<1

dummy = 1 for y<1

Commodity Exposure 1.144∗∗∗ 1.160∗∗∗ 0.395∗∗∗ 0.434∗∗∗ 0.376∗∗∗ 0.365∗∗∗ −0.469∗∗∗ −0.485∗∗∗

(0.092) (0.094) (0.029) (0.030) (0.033) (0.033) (0.072) (0.073)
Panel B
log(y) for y>1; y, for 0<y<1

dummy = 1 for y<1

Commodity Exposure 1.107∗∗∗ 1.123∗∗∗ 0.389∗∗∗ 0.426∗∗∗ 0.376∗∗∗ 0.365∗∗∗ −0.469∗∗∗ −0.485∗∗∗

(0.092) (0.094) (0.028) (0.029) (0.033) (0.033) (0.072) (0.073)
Panel C
dummy= 1 for y>0

Commodity Exposure 0.829∗∗∗ 0.848∗∗∗ 0.382∗∗∗ 0.418∗∗∗ 0.314∗∗∗ 0.310∗∗∗ −0.469∗∗∗ −0.485∗∗∗

(0.087) (0.089) (0.027) (0.028) (0.022) (0.022) (0.072) (0.073)

Initial Controls No Yes No Yes No Yes No Yes

Weather Controls No Yes No Yes No Yes No Yes

Municipality & Time FE Yes Yes Yes Yes Yes Yes Yes Yes

Observations (Panel A and B) 29,024 28,429 94,690 94,010 94,690 94,010 27,339 27,163
Observations (Panel C) 29,024 28,429 94,690 94,010 94,608 93,928 27,339 27,163

Notes. This table presents results from estimation of Equation (1) for dependent variables “Deforestation", “Number of Fires", and “Net GHG Emissions"
from 2001-2017 and “ABC Credit" from 2013-2017 for Brazilian municipalities. In Panel A we utilize the following variable transformation process: if
dependent variable y is greater than 1, we utilize log (y); if 0 < y < 1, we use log (y +1); we then create a dummy variable equal to 1 for y values between 0
and 1. In Panel B we use the following: if dependent variable y is greater than 1, we utilize l og (y); if 0 < y < 1, we use y ; we then create a dummy variable
equal to 1 for y values between 0 and 1. In Panel C we run our main specification with log +1 in both the dependent and exposure variables, but add
dummies when our dependent variables are greater than 0. The unit of observation is municipality-year. Standard errors are clustered at the municipal
level. Initial controls have time-varying coefficients, and include variables such as population size, poverty rate, and illiteracy rate. Weather controls
include geo-climatic variables (rainfall and temperature). We use the commodity exposure index from Equation (2). Statistical significance is given by
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Table A.24: Using Micro-Regions To Account for Spillovers

Dependent variable:

Deforestation Number of Fires Net GHG Emissions ABC Credit

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Panel A (log)

Commodity Exposure 0.897∗∗∗ 0.869∗∗∗ 0.351∗∗∗ 0.417∗∗∗ 0.413∗∗∗ 0.400∗∗∗ −2.667∗ −3.275∗∗

(0.210) (0.212) (0.085) (0.086) (0.092) (0.092) (1.488) (1.513)
Panel B (asinh)

Commodity Exposure 0.554∗∗∗ 0.510∗∗ 0.295∗∗∗ 0.366∗∗∗ 0.606 0.313 −2.614∗ −3.268∗∗

(0.206) (0.204) (0.083) (0.084) (0.448) (0.430) (1.505) (1.533)

Initial Controls No Yes No Yes No Yes No Yes

Weather Controls No Yes No Yes No Yes No Yes

Municipality & Time FE Yes Yes Yes Yes Yes Yes Yes Yes

Observations (Panels A) 3,763 3,644 8,619 8,500 8,296 8,255 2,548 2,513
Observations (Panel B) 3,763 3,644 8,619 8,500 8,670 8,551 2,548 2,513

Notes. This table presents results from estimation of Equation (1) for dependent variables “Deforestation", “Number of Fires", and “Net GHG
Emissions" from 2001-2017 and “ABC Credit" from 2013-2017 for Brazilian municipalities. The dependent variables and the commodity expo-
sure index are transformed into log +1 in Panel A and asi nh in Panel B. The unit of observation is micro-region-year. We use IBGE’s definition
of micro-region, with 510 units of observation. Standard errors are also clustered at the micro-region level. Initial controls have time-varying
coefficients, and include variables such as population size, poverty rate, and illiteracy rate. Weather controls utilize geo-climatic variables
(temperature and rainfall). We use the commodity exposure index from Equation (2). Statistical significance is given by ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01.

57



Table A.25: Using MCAs — Minimum Comparable Areas

Dependent variable:

Deforestation Number of Fires Net GHG Emissions ABC Credit

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Panel A (log)

Commodity Exposure 0.369∗∗∗ 0.343∗∗∗ 0.216∗∗∗ 0.228∗∗∗ 0.220∗∗∗ 0.216∗∗∗ −2.606∗∗∗ −2.559∗∗∗

(0.032) (0.032) (0.039) (0.039) (0.032) (0.032) (0.139) (0.139)
Panel B (asinh)

Commodity Exposure 0.398∗∗∗ 0.370∗∗∗ 0.192∗∗∗ 0.201∗∗∗ 0.940∗∗∗ 0.890∗∗∗ −2.740∗∗∗ −2.682∗∗∗

(0.035) (0.036) (0.046) (0.046) (0.187) (0.185) (0.142) (0.143)

Initial Controls No Yes No Yes No Yes No Yes

Weather Controls No Yes No Yes No Yes No Yes

Municipality & Time FE Yes Yes Yes Yes Yes Yes Yes Yes

Observations (Panel A) 72,539 72,539 72,539 72,539 69,776 69,776 72,539 72,539
Observations (Panel B) 72,539 72,539 72,539 72,539 72,539 72,539 72,539 72,539

Notes. This table presents results from estimation of Equation (1) for dependent variables “Deforestation", “Number of Fires", and “Net GHG
Emissions" from 2001-2017 and “ABC Credit" from 2013-2017 using MCAs (AMCs) for year 2000 — Minimum Comparable Areas, or Áreas Min-
imamente Comparáveis — instead of municipalities. The dependent variables and the commodity exposure index are transformed into log +1
in Panel A and using asi nh in Panel B. The unit of observation is municipality-year. Standard errors are clustered at the municipal level. Initial
controls have time-varying coefficients, and include variables such as population size, poverty rate, and illiteracy rate. Weather controls include
geo-climatic variables (rainfall and temperature). We use the commodity exposure index from Equation (8). Statistical significance is given by
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Table A.26: Using Dependent Variables At Per Capita Level

Dependent variable:

Deforestation Number of Fires Net GHG Emissions ABC Credit

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Panel A (log)

Commodity Exposure 0.00002∗∗∗ 0.00002∗∗∗ 0.00005∗∗∗ 0.0001∗∗∗ 1.174∗∗∗ 1.253∗∗∗ −0.647∗ −0.801∗

(0.00001) (0.00001) (0.00001) (0.00002) (0.245) (0.288) (0.379) (0.447)
Panel B (asinh)

Commodity Exposure 0.00002∗∗∗ 0.00002∗∗∗ 0.00005∗∗∗ 0.0001∗∗∗ 1.174∗∗∗ 1.253∗∗∗ −0.647∗ −0.801∗

(0.00001) (0.00001) (0.00001) (0.00002) (0.245) (0.288) (0.379) (0.447)

Initial Controls No Yes No Yes No Yes No Yes

Weather Controls No Yes No Yes No Yes No Yes

Municipality & Time FE Yes Yes Yes Yes Yes Yes Yes Yes

Observations 28,628 28,033 74,572 73,940 93,585 92,922 27,037 26,861

Notes. This table presents results from estimation of Equation (1) for dependent variables “Deforestation", “Number of Fires", and “Net GHG Emissions"
from 2001-2017 and “ABC Credit" from 2013-2017 for Brazilian municipalities. The dependent variables are computed at the per capita level — square
kilometers, number of fires, net GHG emissions, and ABC Credit are divided by the initial population of municipalities—following IBGE’s data. The
commodity exposure index are transformed into log +1 in Panel A and using asi nh in Panel B. The unit of observation is municipality-year. Standard
errors are clustered at the municipal level. Initial controls have time-varying coefficients, and include variables such as population size, poverty rate,
and illiteracy rate. Weather controls include geo-climatic variables (rainfall and temperature). We use the commodity exposure index from Equation
(2). Statistical significance is given by ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table A.27: Using Dependent Variables At Per Hectare

Dependent variable:

Deforestation Number of Fires Net GHG Emissions ABC Credit

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Panel A (log)

Commodity Exposure 0.00000∗∗∗ 0.00000∗∗∗ 0.00002∗∗∗ 0.00002∗∗∗ 5.852 6.990 0.004 0.003
(0.00000) (0.00000) (0.00001) (0.00000) (4.493) (5.353) (0.003) (0.003)

Panel B (asinh)

Commodity Exposure 0.00000∗∗∗ 0.00000∗∗∗ 0.00002∗∗∗ 0.00002∗∗∗ 5.852 6.686 0.004 0.003
(0.00000) (0.00000) (0.00001) (0.00000) (4.493) (5.150) (0.003) (0.003)

Initial Controls No Yes No Yes No Yes No Yes

Weather Controls No Yes No Yes No Yes No Yes

Municipality & Time FE Yes Yes Yes Yes Yes Yes Yes Yes

Observations 28,931 28,336 94,690 94,010 94,690 94,010 94,690 94,010

Notes. This table presents results from estimation of Equation (1) for dependent variables “Deforestation", “Number of Fires", and “Net GHG Emis-
sions" from 2006 and 2017 and “ABC Credit" from 2013-2017 for Brazilian municipalities. The dependent variables are computed at the per hectare
level—square kilometers, number of fires, net GHG emissions, and ABC Credit are divided by the initial number of hectares used for crops and pas-
tures in municipalities—following IBGE’s data. The commodity exposure index are transformed into log +1 in Panel A and using asi nh in Panel B.
The unit of observation is municipality-year. Standard errors are clustered at the municipal level. Initial controls have time-varying coefficients, and
include variables such as population size, poverty rate, and illiteracy rate. Weather controls include geo-climatic variables (rainfall and temperature).
We use the commodity exposure index from Equation (2). Statistical significance is given by ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Appendix B Detailing the Robustness and Specification Checks

We now describe all the tables, figures, and results presented in Appendix A. We first show

Table A.1, which displays the summary statistics of all variables taken into consideration in

our dataset. Columns “Statistic" and “Unit" describe the variable and its unit of measure-

ment, respectively, while column “N" shows the number of observations and the remaining

columns present basic statistics. The last four lines in this table show the commodity expo-

sure indexes (CE) we utilize in our estimations and robustness checks described below: CE

baseline, CE 2, CE 3, and CE 4 represent our baseline exposure, employment share expo-

sure, quantity share exposure, and potential yield exposure, respectively. Table A.2 presents

the number of municipalities in Brazil that produce each of the agricultural commodities

in column “Commodity"—this is relevant to demonstrate the amplitude of our empirical

strategy since all those commodities are included in our commodity exposure index, and

they represent a relevant share of gross agricultural production. For a better sense of the al-

ternative commodity exposure indexes explained in Section 3, we plot their exposure maps

for the base year 2010, when commodity prices were at a high point in the super-cycle—see

Figure A.1. Notice that alternative definitions for commodity exposure indexes seem to be

correlated.

We then present Tables A.3 through A.27 with our robustness checks and additional re-

sults. We begin with Tables A.3 through A.5, showing results for the alternative commodity

exposure measures mentioned above (which we detail further below). Next, we perform an

inference assessment proposed by Adão et al. (2019) to account for possible cross-regional

correlation in the error terms in our regressions; we display the results in Table A.6. In ad-

dition, we run another inference assessment by Ferman (2021) in order to identify possible

over- and under-rejection of the null. Results are given in Table A.7. We cluster the standard

errors into micro-regions and meso-regions for deforestation, the number of fires, net GHG

emissions, and ABC credit in Table A.8. Finally, we run a multiple hypothesis tests; results

are in Table A.9.

Next, we run a sensitivity test for a period in which the commodity boom had not yet

reached sustainable levels—shown in Table A.10. We then estimate the Rotemberg Weights

for all the commodities used in our baseline commodity index to evaluate the share ex-

ogeneity assumption. We utilize a cross-section approach, using year 2013. Weights are

shown in Table A.11. We calculate the weights as follows:

α̂k = PkC Ei qi k∑
k PkC Ei qi k

(5)
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where αk is the RW for crop/livestock k, Pk are prices for crop/livestock k, C Ei is the com-

modity exposure index estimated according to Equation (2) for municipality i , and qi k is

the share of commodity k for municipality i —see Section 3. We then test whether co-

variates influence our baseline results and run a pre-trend analysis for the most relevant

shares—results are displayed in Table A.12 and Figure A.2, respectively.

Additionally, in Table A.13 we run a Poisson fixed effects regression to account for a

discrete specification for our main results on the number of fires. As shown, the response

of the number of fires to the commodity exposure index remains positive and significant.

We also construct Table A.14 in which we demonstrate a first difference approach to our

main dependent variables following:

∆yi =β∆C Ei +γ∆Xi +η∆Wi +εi (6)

where we follow the same specification as in Equation (1) but only for the years 2013 and

2003—a year of considerably high prices for agricultural commodities and the beginning

of the commodity cycle, respectively. In Table A.15 we run our baseline commodity ex-

posure index on our main dependent variables removing the most relevant commodities

from the index, one at a time. We then run a relevant placebo test. First, we select mining

data on Brazilian municipalities which collect a yearly mining tax—CFEM (Compensação

Financeira pela Exploração de Recursos Minerais)—and we utilize tax collection as shares

in a new commodity exposure index calculated following Equation (2) using iron ore in-

ternational prices from the World Bank Pink Sheet in reais as shifts. Importantly, iron ore

represents more than 75% of Brazil’s mining production and about 70% of all mineral ex-

traction takes place in 10 municipalities—all of which are iron ore producers. We display

the results in Table A.16. Subsequently, we present Tables A.17 through A.22 which give

detailed results for Figures 2 through 7, respectively. In these tables, we show coefficients

for log + 1 and asi nh (the hyperbolic inverse sine transformation), and we also present

controls, the number of observations, and whether estimations had fixed effects.

We then check for different log specifications in Table A.23. We first apply log and log+1

on variable values greater than 1 and on interval [0, 1], respectively. We add a dummy for

the latter variable as control for Equation (1) (see Panel A). Secondly, we apply log+1 on

variable values ∈ [0, 1] and use actual values otherwise, using the same dummy as above

as control (see Panel B). Finally, we test our original specification with dummies for depen-

dent variable values greater than 0 (see Panel C).

Next, we aggregate our analysis into 510 micro-regions following IBGE’s classification
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to take into consideration possible spillover effects among neighboring municipalities, and

we display the results in Table A.24. We also perform an exercise with MCAs—Áreas Min-

imamente Comparáveis—in Table A.25. Finally, we switch our dependent variables to the

per capita level in Table A.26 and to the per hectare level in Table A.27. It is worth mention-

ing that our results remain largely valid after all the described robustness checks.

Below, we describe the alternative commodity exposure indexes used in the robustness

exercises of our main specification given by Equation (1)—the results given in Tables A.3

through A.5. First, we perform an estimation following Benguria et al. (2021) by defining a

regional commodity index as the weighted average of individual commodity prices. We call

this commodity exposure 2. The authors utilize employment shares for each commodity

with individual commodity prices, as given by the following equation:

pr t =
∑

c∈C pct ecr∑
c∈C ecr

(7)

where pct stands for the price of commodity c in period t , and ecr represents the base-

year employment of commodity c in region r . In our case, due to data constraints, we

use as base-year employment in 1995 (agricultural census year). Moreover, we perform

the estimation taking into account employment in sectors, not for individual commodities

as done by Benguria et al. (2021). We divide agricultural employment in three categories:

temporary crops, permanent crops, and livestock. We define sugar-cane, maize, soybeans,

and rice as temporary crops; banana, cocoa, coffee, and oranges are defined as permanent

crops; and beef-cattle is considered livestock. We use the average prices per ton for each

of those crops and livestock for calculating the index in Equation (7). Table A.3 shows our

results for this specification. All our previous results remain significant.

As for alternative exposure 3, we define the variable C Ei t for municipality i and time t

according to the following equation:

C Ei t =
∑
k

qki ,T Pkt (8)

where the term qki ,T is the share of total production (in tons) for crop or livestock k from

years (T − 5) to 2000 or 2012 in municipality i —given by the quantities from IBGE’s PAM

and PPM—, which sums up to 1 across crop or livestock k, and Pkt represents the real

international commodity prices for crop or livestock k at time t converted into Brazilian

2010 reais according to Brazil’s official real exchange rate data.

For commodity exposure 4, we perform a similar procedure as above, but instead of
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utilizing quantities to calculate a lagged share to be used in Equation (8) above, we use FAO-

GAEZ’s land suitability attainable yield directly to calculate the shares. This yields a direct

measure of GAEZ’s suitability. Tables A.3 and A.4 show our results for these specifications.

All our previous results remain largely robust.
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